Optimal least square vector autoregressive moving average for battery state of charge estimation and forecasting

被引:5
作者
Caliwag, Angela [1 ]
Lim, Wansu [1 ]
机构
[1] Kumoh Natl Inst Technol, Dept Aeronaut Mech & Elect Convergence Engn, Gumi, South Korea
来源
ICT EXPRESS | 2021年 / 7卷 / 04期
基金
新加坡国家研究基金会;
关键词
Battery; Forecasting; State-of-charge; Optimization; VARMA; LITHIUM-ION BATTERY; VARMA;
D O I
10.1016/j.icte.2021.03.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The error in state of charge estimation using the combined models is usually attributable to the statistical model. In this study, a least square algorithm is utilized to optimize and increase the state of charge estimation accuracy. Specifically, the vector autoregressive moving average statistical model is optimized using the least square algorithm. The results presented in this paper show that the proposed method is effective in eliminating the estimation and measurement noise using the conventional statistical method and in optimizing the SoC estimation and forecasting. The optimization of the statistical model increases the SoC estimation and forecasting accuracy by 59.11%. (C) 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V.
引用
收藏
页码:493 / 496
页数:4
相关论文
共 50 条
  • [1] Estimation and forecasting in vector autoregressive moving average models for rich datasets
    Dias, Gustavo Fruet
    Kapetanios, George
    JOURNAL OF ECONOMETRICS, 2018, 202 (01) : 75 - 91
  • [2] Optimal battery state of charge parameter estimation and forecasting using non-linear autoregressive exogenous
    Nefraoui A.
    Kandoussi K.
    Louzazni M.
    Boutahar A.
    Elotmani R.
    Daya A.
    Materials Science for Energy Technologies, 2023, 6 : 522 - 532
  • [3] Bayesian modeling and forecasting of vector autoregressive moving average processes
    Shaarawy, Samir M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (11) : 3795 - 3815
  • [4] Battery state-of-charge estimation using approximate least squares
    Unterrieder, C.
    Zhang, C.
    Lunglmayr, M.
    Priewasser, R.
    Marsili, S.
    Huemer, M.
    JOURNAL OF POWER SOURCES, 2015, 278 : 274 - 286
  • [5] A COMPARISON OF ESTIMATION METHODS FOR VECTOR AUTOREGRESSIVE MOVING-AVERAGE MODELS
    Kascha, Christian
    ECONOMETRIC REVIEWS, 2012, 31 (03) : 297 - 324
  • [6] Vector AutoRegressive Moving Average Models: A Review
    Dueker, Marie-Christine
    Matteson, David S.
    Tsay, Ruey S.
    Wilms, Ines
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2025, 17 (01):
  • [7] A product quality forecasting using autoregressive moving average
    Bon, AT
    Hamid, NA
    Proceedings of the Second IASTED International Conference on Neural Networks and Computational Intelligence, 2004, : 43 - 47
  • [8] Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation
    Tian, Zhongda
    Wang, Gang
    Ren, Yi
    WIND ENGINEERING, 2020, 44 (02) : 152 - 167
  • [9] Forecasting with prediction intervals for periodic autoregressive moving average models
    Anderson, Paul L.
    Meerschaert, Mark M.
    Zhang, Kai
    JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (02) : 187 - 193
  • [10] Lithium-ion Battery State of Charge Estimation based on Moving Horizon
    Ma Yan
    Zhou Xiuwen
    Zhang Jixing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5002 - 5007