Space-time discontinuous Galerkin approximation of acoustic waves with point singularities

被引:14
作者
Bansal, Pratyuksh [1 ]
Moiola, Andrea [2 ]
Perugia, Ilaria [3 ]
Schwab, Christoph [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Ramistr 101, CH-101 Zurich, Switzerland
[2] Univ Pavia, Dept Math, Via Ferrata 5, I-27100 Pavia, Italy
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
欧盟地平线“2020”; 奥地利科学基金会;
关键词
discontinuous Galerkin method; space-time discretization; wave equation; a priori error analysis; corner singularities; locally refined meshes; h-convergence; sparse-tensor approximation; FINITE-ELEMENT METHODS; MESH REFINEMENT; EQUATIONS;
D O I
10.1093/imanum/draa088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a convergence theory of space-time discretizations for the linear, second-order wave equation in polygonal domains Omega subset of R-2, possibly occupied by piecewise homogeneous media with different propagation speeds. Building on an unconditionally stable space-time DG formulation developed in Moiola & Perugia (2018, A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math., 138, 389-435), we (a) prove optimal convergence rates for the space-time scheme with local isotropic corner mesh refinement on the spatial domain, and (b) demonstrate numerically optimal convergence rates of a suitable sparse space-time version of the DG scheme. The latter scheme is based on the so-called combination formula, in conjunction with a family of anisotropic space-time DG discretizations. It results in optimal-order convergent schemes, also in domains with corners, with a number of degrees of freedom that scales essentially like the DG solution of one stationary elliptic problem in Omega on the finest spatial grid. Numerical experiments for both smooth and singular solutions support convergence rate optimality on spatially refined meshes of the full and sparse space-time DG schemes.
引用
收藏
页码:2056 / 2109
页数:54
相关论文
共 45 条
[1]  
Alnaes M, 2015, Arch Numer Softw, V3, DOI DOI 10.11588/ANS.2015.100.20553
[2]   DIRECT AND INVERSE ERROR-ESTIMATES FOR FINITE-ELEMENTS WITH MESH REFINEMENTS [J].
BABUSKA, I ;
KELLOGG, RB ;
PITKARANTA, J .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :447-471
[3]   A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SECOND ORDER WAVE EQUATION [J].
Banjai, Lehel ;
Georgoulis, Emmanuil H. ;
Lijoka, Oluwaseun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) :63-86
[4]   Runge-Kutta convolution quadrature for operators arising in wave propagation [J].
Banjai, Lehel ;
Lubich, Christian ;
Melenk, Jens Markus .
NUMERISCHE MATHEMATIK, 2011, 119 (01) :1-20
[5]  
Bansal P., 2020, ARXIV200211575MATHNA
[6]  
Borovikov V. A., 1994, Geometrical Theory of Diffraction
[7]  
Brenner S.C., 2000, Texts in Applied Mathematics, Vthird
[8]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[9]   hp-VERSION SPACE-TIME DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS ON PRISMATIC MESHES [J].
Cangiani, Andrea ;
Dong, Zhaonan ;
Georgoulis, Emmanuil H. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (04) :A1251-A1279
[10]  
Chernov A, 2012, MATH COMPUT, V81, P765