A Brunn-Minkowski inequality for the Monge-Ampere eigenvalue

被引:21
作者
Salani, P [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
Brunn-Minkowski inequality; Monge-Ampere equation; eigenvalue; intimal convolution;
D O I
10.1016/j.aim.2004.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Brunn-Minkowski-type inequality 2 for the eigenvalue Λ of the Monge-Ampere operator: Λ(-1/2n) is concave in the class of C-+(2) domains in R-n endowed with Minkowski addition. The equality case is explicitly described too. The main device of the proof is a notion of addition for convex functions, called infimal convolution, which corresponds to the Minkowski addition of the graphs of the involved functions. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 22 条
[1]   GREENIAN POTENTIALS AND CONCAVITY [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1985, 272 (01) :155-160
[2]  
BORELL C, 1984, ANN SCI ECOLE NORM S, V17, P451
[3]   Diffusion equations and geometric inequalities [J].
Borell, C .
POTENTIAL ANALYSIS, 2000, 12 (01) :49-71
[4]   CAPACITARY INEQUALITIES OF THE BRUNN-MINKOWSKI TYPE [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1983, 263 (02) :179-184
[5]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[6]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[7]   On the case of equality in the Brunn-Minkowski inequality for capacity [J].
Caffarelli, LA ;
Jerison, D ;
Lieb, EH .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :193-207
[8]   The Brunn-Minkowski inequality for p-capacity of convex bodies [J].
Colesanti, A ;
Salani, P .
MATHEMATISCHE ANNALEN, 2003, 327 (03) :459-479
[9]  
COLESANTI A, IN PRESS APPL ANAL
[10]  
COLESANTI A, IN PRESS POTENTIAL A