High-Fidelity Bell-State Preparation with 40Ca+ Optical Qubits

被引:121
作者
Clark, Craig R. [1 ]
Tinkey, Holly N. [1 ]
Sawyer, Brian C. [1 ]
Meier, Adam M. [1 ]
Burkhardt, Karl A. [1 ]
Seck, Christopher M. [1 ,2 ]
Shappert, Christopher M. [1 ]
Guise, Nicholas D. [1 ]
Volin, Curtis E. [1 ,3 ]
Fallek, Spencer D. [1 ]
Hayden, Harley T. [1 ]
Rellergert, Wade G. [1 ]
Brown, Kenton R. [1 ]
机构
[1] Georgia Tech Res Inst, Atlanta, GA 30332 USA
[2] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[3] Honeywell Quantum Solut, 303 S Technol Ct, Broomfield, CO 80021 USA
关键词
QUANTUM; ION; UNIVERSAL;
D O I
10.1103/PhysRevLett.127.130505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement generation in trapped-ion systems has relied thus far on two distinct but related geometric phase gate techniques: Molmer-Sorensen and light-shift gates. We recently proposed a variant of the light-shift scheme where the qubit levels are separated by an optical frequency [B. C. Sawyer and K. R. Brown, Phys. Rev. A 103, 022427 (2021)]. Here we report an experimental demonstration of this entangling gate using a pair of C-40(+) ions in a cryogenic surface-electrode ion trap and a commercial, high-power, 532 nm Nd:YAG laser. Generating a Bell state in 35 mu s, we directly measure an infidelity of 6(3) x 10(-4) without subtraction of experimental errors. The 532 nm gate laser wavelength suppresses intrinsic photon scattering error to similar to 1 x 10(-5).
引用
收藏
页数:5
相关论文
共 26 条
[1]   Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser [J].
Akerman, Nitzan ;
Navon, Nir ;
Kotler, Shlomi ;
Glickman, Yinnon ;
Ozeri, Roee .
NEW JOURNAL OF PHYSICS, 2015, 17
[2]   Quantum circuits with many photons on a programmable nanophotonic chip [J].
Arrazola, J. M. ;
Bergholm, V ;
Bradler, K. ;
Bromley, T. R. ;
Collins, M. J. ;
Dhand, I ;
Fumagalli, A. ;
Gerrits, T. ;
Goussev, A. ;
Helt, L. G. ;
Hundal, J. ;
Isacsson, T. ;
Israel, R. B. ;
Izaac, J. ;
Jahangiri, S. ;
Janik, R. ;
Killoran, N. ;
Kumar, S. P. ;
Lavoie, J. ;
Lita, A. E. ;
Mahler, D. H. ;
Menotti, M. ;
Morrison, B. ;
Nam, S. W. ;
Neuhaus, L. ;
Qi, H. Y. ;
Quesada, N. ;
Repingon, A. ;
Sabapathy, K. K. ;
Schuld, M. ;
Su, D. ;
Swinarton, J. ;
Szava, A. ;
Tan, K. ;
Tan, P. ;
Vaidya, V. D. ;
Vernon, Z. ;
Zabaneh, Z. ;
Zhang, Y. .
NATURE, 2021, 591 (7848) :54-+
[3]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[4]   Towards fault-tolerant quantum computing with trapped ions [J].
Benhelm, Jan ;
Kirchmair, Gerhard ;
Roos, Christian F. ;
Blatt, Rainer .
NATURE PHYSICS, 2008, 4 (06) :463-466
[5]   Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation [J].
Bermudez, A. ;
Xu, X. ;
Nigmatullin, R. ;
O'Gorman, J. ;
Negnevitsky, V. ;
Schindler, P. ;
Monz, T. ;
Poschinger, U. G. ;
Hempel, C. ;
Home, J. ;
Schmidt-Kaler, F. ;
Biercuk, M. ;
Blatt, R. ;
Benjamin, S. ;
Mueller, M. .
PHYSICAL REVIEW X, 2017, 7 (04)
[6]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[7]   Trapped-ion quantum computing: Progress and challenges [J].
Bruzewicz, Colin D. ;
Chiaverini, John ;
McConnell, Robert ;
Sage, Jeremy M. .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[8]   Semiconductor qubits in practice [J].
Chatterjee, Anasua ;
Stevenson, Paul ;
De Franceschi, Silvano ;
Morello, Andrea ;
de Leon, Nathalie P. ;
Kuemmeth, Ferdinand .
NATURE REVIEWS PHYSICS, 2021, 3 (03) :157-177
[9]   Observing a single hydrogen-like ion in a Penning trap at T=4K [J].
Diederich, M ;
Haffner, H ;
Hermanspahn, N ;
Immel, M ;
Kluge, HJ ;
Ley, R ;
Mann, R ;
Quint, W ;
Stahl, S ;
Werth, G .
HYPERFINE INTERACTIONS, 1998, 115 (1-4) :185-192
[10]   2-BIT GATES ARE UNIVERSAL FOR QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
PHYSICAL REVIEW A, 1995, 51 (02) :1015-1022