Membrane Delivery to the Yeast Autophagosome from the Golgi-Endosomal System

被引:144
作者
Ohashi, Yohei [1 ]
Munro, Sean [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 0QH, England
基金
英国医学研究理事会;
关键词
PHOSPHATIDYLINOSITOL; 3-PHOSPHATE; SECRETORY PATHWAY; PREAUTOPHAGOSOMAL STRUCTURE; SELECTIVE AUTOPHAGY; VESICLE FORMATION; SYNTAXIN HOMOLOG; SEC PROTEINS; CVT VESICLE; COMPLEX; TRANSPORT;
D O I
10.1091/mbc.E10-05-0457
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
While many of the proteins required for autophagy have been identified, the source of the membrane of the autophagosome is still unresolved with the endoplasmic reticulum (ER), endosomes, and mitochondria all having been evoked. The integral membrane protein Atg9 is delivered to the autophagosome during starvation and in the related cytoplasm-to-vacuole (Cvt) pathway that occurs constitutively in yeast. We have examined the requirements for delivery of Atg9-containing membrane to the yeast autophagosome. Atg9 does not appear to originate from mitochondria, and Atg9 cannot reach the forming autophagosome directly from the ER or early Golgi. Components of traffic between Golgi and endosomes are known to be required for the Cvt pathway but do not appear required for autophagy in starved cells. However, we find that pairwise combinations of mutations in Golgi-endosomal traffic components apparently only required for the Cvt pathway can cause profound defects in Atg9 delivery and autophagy in starved cells. Thus it appears that membrane that contains Atg9 is delivered to the autophagosome from the Golgi-endosomal system rather than from the ER or mitochondria. This is underestimated by examination of single mutants, providing a possible explanation for discrepancies between yeast and mammalian studies on Atg9 localization and autophagosome formation.
引用
收藏
页码:3998 / 4008
页数:11
相关论文
共 70 条
[1]   Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p [J].
Abeliovich, H ;
Darsow, T ;
Emr, SD .
EMBO JOURNAL, 1999, 18 (21) :6005-6016
[2]   Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum [J].
Axe, Elizabeth L. ;
Walker, Simon A. ;
Manifava, Maria ;
Chandra, Priya ;
Roderick, H. Llewelyn ;
Habermann, Anja ;
Griffiths, Gareth ;
Ktistakis, Nicholas T. .
JOURNAL OF CELL BIOLOGY, 2008, 182 (04) :685-701
[3]   Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p [J].
Babst, M ;
Sato, TK ;
Banta, LM ;
Emr, SD .
EMBO JOURNAL, 1997, 16 (08) :1820-1831
[4]   Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast [J].
Becherer, KA ;
Rieder, SE ;
Emr, SD ;
Jones, EW .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (04) :579-594
[5]   The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Levi, BP ;
Patel, FI ;
Stevens, TH .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4277-4294
[6]   A complete set of SNAREs in yeast [J].
Burri, L ;
Lithgow, T .
TRAFFIC, 2004, 5 (01) :45-52
[7]   Regulators of yeast endocytosis identified by systematic quantitative analysis [J].
Burston, Helen E. ;
Maldonado-Baez, Lymarie ;
Davey, Michael ;
Montpetit, Benjamen ;
Schluter, Cayetana ;
Wendland, Beverly ;
Conibear, Elizabeth .
JOURNAL OF CELL BIOLOGY, 2009, 185 (06) :1097-1110
[8]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[9]   A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole [J].
Darsow, T ;
Rieder, SE ;
Emr, SD .
JOURNAL OF CELL BIOLOGY, 1997, 138 (03) :517-529
[10]   Turnover of organelles by autophagy in yeast [J].
Farre, Jean-Claude ;
Krick, Roswitha ;
Subramani, Suresh ;
Thumm, Michael .
CURRENT OPINION IN CELL BIOLOGY, 2009, 21 (04) :522-530