Integrability and continuity of solutions to double divergence form equations

被引:19
作者
Bogachev, Vladimir I. [1 ]
Shaposhnikov, Stanislav V. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow, Russia
关键词
Double divergence form equation; Continuity of solutions; Harnack's inequality; Stationary Fokker-Planck-Kolmogorov equation; ELLIPTIC-EQUATIONS; PARABOLIC EQUATIONS; NONDIVERGENCE FORM; OPERATORS; REGULARITY; ADJOINT; INEQUALITY; BOUNDS;
D O I
10.1007/s10231-016-0631-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain sharp conditions for higher integrability and continuity of solutions to double divergence form second-order elliptic equations with coefficients of low regularity. In addition, we prove Harnack's inequality in this case.
引用
收藏
页码:1609 / 1635
页数:27
相关论文
共 35 条
[1]   A Condition for the Positivity of the Density of an Invariant Measure [J].
Agafontsev, B. V. ;
Bogachev, V. I. ;
Shaposhnikov, S. V. .
DOKLADY MATHEMATICS, 2011, 83 (03) :332-336
[2]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[3]  
[Anonymous], 1991, Ric. Mat.
[4]  
[Anonymous], 2003, SOBOLEV SPACES
[5]  
[Anonymous], 2008, Lectures on elliptic and parabolic equations in Sobolev spaces
[6]  
[Anonymous], 1989, GRADUATE TEXTS MATH
[7]   EQUIVALENCE OF THE GREEN-FUNCTIONS FOR DIFFUSION OPERATORS IN RN - A COUNTEREXAMPLE [J].
BAUMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (01) :64-68
[8]   POSITIVE SOLUTIONS OF ELLIPTIC-EQUATIONS IN NONDIVERGENCE FORM AND THEIR ADJOINTS [J].
BAUMAN, P .
ARKIV FOR MATEMATIK, 1984, 22 (02) :153-173
[9]   On Positive and Probability Solutions to the Stationary Fokker-Planck-Kolmogorov Equation [J].
Bogachev, V. I. ;
Roeckner, M. ;
Shaposhnikov, S. V. .
DOKLADY MATHEMATICS, 2012, 85 (03) :350-354
[10]  
Bogachev V.I., 2007, Measure theory, P1