How often are chaotic transients in spatially extended ecological systems?

被引:11
作者
Dhamala, M
Lai, YC [1 ]
Holt, RD
机构
[1] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Math, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Phys, Tempe, AZ 85287 USA
[4] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[5] Univ Kansas, Dept Systemat & Ecol, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(01)00069-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A traditional assumption in quantitative ecology is that the asymptotic state of the model determines what can be observed in the evolution of the system. It is suggested, however, that irregular transient behaviors may be more relevant than the long term behaviors. Here we investigate how often transient dynamics can be expected in spatially extended ecological systems. Our study suggests that although chaotic transient dynamics indeed exist, sustained dynamics may be more prevalent than transient ones due to the high dimensionality of such systems. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 50 条
[31]   How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system [J].
O'Regan, Suzanne M. .
JOURNAL OF BIOLOGICAL DYNAMICS, 2017, 12 (01) :211-241
[32]   Chaotic multidomain oscillations in a spatially-extended semiconductor device [J].
Ito, H ;
Ueda, Y .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2001, E84A (11) :2908-2914
[33]   Management implications of long transients in ecological systems [J].
Tessa B. Francis ;
Karen C. Abbott ;
Kim Cuddington ;
Gabriel Gellner ;
Alan Hastings ;
Ying-Cheng Lai ;
Andrew Morozov ;
Sergei Petrovskii ;
Mary Lou Zeeman .
Nature Ecology & Evolution, 2021, 5 :285-294
[34]   Ecological management of stochastic systems with long transients [J].
Carl Boettiger .
Theoretical Ecology, 2021, 14 :663-671
[35]   Ecological management of stochastic systems with long transients [J].
Boettiger, Carl .
THEORETICAL ECOLOGY, 2021, 14 (04) :663-671
[36]   Management implications of long transients in ecological systems [J].
Francis, Tessa B. ;
Abbott, Karen C. ;
Cuddington, Kim ;
Gellner, Gabriel ;
Hastings, Alan ;
Lai, Ying-Cheng ;
Morozov, Andrew ;
Petrovskii, Sergei ;
Zeeman, Mary Lou .
NATURE ECOLOGY & EVOLUTION, 2021, 5 (03) :285-294
[37]   Communications by synchronization of spatially symmetric chaotic systems [J].
González-Miranda, JM .
PHYSICS LETTERS A, 1999, 251 (02) :115-120
[38]   SPATIALLY DISTRIBUTED CHAOTIC SOLITONS IN ELASTOSTATIC SYSTEMS [J].
ELNASCHIE, MS .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (04) :T105-T108
[39]   Lyapunov spectra in spatially extended systems [J].
Ruffo, S .
CELLULAR AUTOMATA AND COMPLEX SYSTEMS, 1999, 3 :153-180
[40]   Spatiotemporal chaos in spatially extended systems [J].
Cai, D ;
McLaughlin, DW ;
Shatah, J .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (4-6) :329-340