How often are chaotic transients in spatially extended ecological systems?

被引:11
作者
Dhamala, M
Lai, YC [1 ]
Holt, RD
机构
[1] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Math, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Phys, Tempe, AZ 85287 USA
[4] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[5] Univ Kansas, Dept Systemat & Ecol, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(01)00069-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A traditional assumption in quantitative ecology is that the asymptotic state of the model determines what can be observed in the evolution of the system. It is suggested, however, that irregular transient behaviors may be more relevant than the long term behaviors. Here we investigate how often transient dynamics can be expected in spatially extended ecological systems. Our study suggests that although chaotic transient dynamics indeed exist, sustained dynamics may be more prevalent than transient ones due to the high dimensionality of such systems. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 50 条
[21]   HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC [J].
LAI, YC ;
GREBOGI, C ;
YORKE, JA ;
KAN, I .
NONLINEARITY, 1993, 6 (05) :779-797
[22]   Spectral Statistics in Spatially Extended Chaotic Quantum Many-Body Systems [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW LETTERS, 2018, 121 (06)
[23]   Amplification through chaotic synchronization in spatially extended beam-plasma systems [J].
Moskalenko, Olga I. ;
Frolov, Nikita S. ;
Koronovskii, Alexey A. ;
Hramov, Alexander E. .
CHAOS, 2017, 27 (12)
[24]   Chaotic transients in some nonlinear systems [J].
Hung, NX ;
Hoang, NX ;
Thang, NC .
APPLIED ELECTROMAGNETICS (III), 2001, 10 :416-419
[25]   Universality of noise-induced resilience restoration in spatially-extended ecological systems [J].
Ma, Cheng ;
Korniss, Gyorgy ;
Szymanski, Boleslaw K. ;
Gao, Jianxi .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[26]   Universality of noise-induced resilience restoration in spatially-extended ecological systems [J].
Cheng Ma ;
Gyorgy Korniss ;
Boleslaw K. Szymanski ;
Jianxi Gao .
Communications Physics, 4
[27]   Models of spatially extended systems [J].
Livi, R .
DYNAMICS OF COMPLEX INTERACTING SYSTEMS, 1996, 2 :1-33
[28]   Observation of chaotic attractor in spatially extended systems: Coarse-grained dimension of frozen chaos [J].
Choi, D ;
Fuchikami, N ;
Hirokami, E ;
Ishioka, S ;
Naito, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1999, 38 (6A) :3784-3792
[29]   PREDICTABILITY IN SPATIALLY EXTENDED SYSTEMS [J].
PALADIN, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (14) :4911-4917
[30]   Observation of chaotic attractor in spatially extended systems: Coarse-grained dimension of frozen chaos [J].
Choi, Donghak ;
Fuchikami, Nobuko ;
Hirokami, Eriko ;
Ishioka, Shunya ;
Naito, Masayoshi .
Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1999, 38 (6 A) :3784-3792