How often are chaotic transients in spatially extended ecological systems?

被引:10
|
作者
Dhamala, M
Lai, YC [1 ]
Holt, RD
机构
[1] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Math, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Phys, Tempe, AZ 85287 USA
[4] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[5] Univ Kansas, Dept Systemat & Ecol, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(01)00069-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A traditional assumption in quantitative ecology is that the asymptotic state of the model determines what can be observed in the evolution of the system. It is suggested, however, that irregular transient behaviors may be more relevant than the long term behaviors. Here we investigate how often transient dynamics can be expected in spatially extended ecological systems. Our study suggests that although chaotic transient dynamics indeed exist, sustained dynamics may be more prevalent than transient ones due to the high dimensionality of such systems. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 50 条
  • [1] Chaotic transients in spatially extended systems
    Tel, Tamas
    Lai, Ying-Cheng
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 460 (06): : 245 - 275
  • [2] Chaotic waves and phase synchronization in spatially extended ecological systems
    Blasius, B
    Stone, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 221 - 225
  • [3] Modeling chaotic and spatially extended systems
    Merkwirth, C
    Parlitz, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S113 - S116
  • [4] Scaling properties of spatially extended chaotic systems
    Szendro, I. G.
    Lopez, J. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 143 : 13 - 18
  • [5] Symmetry and control: spatially extended chaotic systems
    Grigoriev, RO
    PHYSICA D, 2000, 140 (3-4): : 171 - 192
  • [6] Scaling properties of spatially extended chaotic systems
    I. G. Szendro
    J. M. López
    The European Physical Journal Special Topics, 2007, 143 : 13 - 18
  • [7] Synchronization of spatially extended chaotic systems with asymmetric coupling
    Boccaletti, S
    Mendoza, C
    Bragard, J
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 411 - 417
  • [8] Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions
    Cencini, M.
    Tessone, C. J.
    Torcini, A.
    CHAOS, 2008, 18 (03)
  • [9] Asymmetric coupling effects in the synchronization of spatially extended chaotic systems
    Bragard, J
    Boccaletti, S
    Mancini, H
    PHYSICAL REVIEW LETTERS, 2003, 91 (06)
  • [10] Dynamic scaling of bred vectors in spatially extended chaotic systems
    Primo, C.
    Szendro, I. G.
    Rodriguez, M. A.
    Lopez, J. M.
    EUROPHYSICS LETTERS, 2006, 76 (05): : 767 - 773