Convergence of adaptive stochastic collocation with finite elements

被引:8
作者
Feischl, Michael [1 ]
Scaglioni, Andrea [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Stochastic collocation; Adaptive mesh refinement; Uncertainty quantification; PARTIAL-DIFFERENTIAL-EQUATIONS; PETROV-GALERKIN DISCRETIZATION; POLYNOMIAL INTERPOLATION; UNCERTAINTY; APPROXIMATION;
D O I
10.1016/j.camwa.2021.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an elliptic partial differential equation with a random diffusion parameter discretized by a stochastic collocation method in the parameter domain and a finite element method in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm which adaptively enriches the parameter space as well as refines the finite element meshes.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 49 条
[1]  
[Anonymous], 1999, CISM COURSES LECT
[2]  
[Anonymous], 1983, Anal. Math.
[3]   Damage analysis of fiber composites Part I: Statistical analysis on fiber scale [J].
Babuska, I ;
Andersson, B ;
Smith, PJ ;
Levin, K .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 172 (1-4) :27-77
[4]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[5]  
Back J., 2011, LECT NOTES COMPUTATI, V76, P43, DOI [DOI 10.1007/978-3-642-15337, DOI 10.1007/978-3-642-15337-2_3]
[6]   High dimensional polynomial interpolation on sparse grids [J].
Barthelmann, V ;
Novak, E ;
Ritter, K .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :273-288
[7]   ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS [J].
Beck, Joakim ;
Tempone, Raul ;
Nobile, Fabio ;
Tamellini, Lorenzo .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (09)
[8]   CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM [J].
Bespalov, Alex ;
Praetorius, Dirk ;
Rocchi, Leonardo ;
Ruggeri, Michele .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) :2359-2382
[9]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253
[10]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550