Adaptive Turbo Equalization for Nonlinearity Compensation in WDM Systems

被引:5
作者
da Silva, Edson Porto [1 ]
Yankov, Metodi Plamenov [2 ]
机构
[1] Fed Univ Campina Grande UFCG, Dept Elect Engn, BR-58429900 Campina Grande, Paraiba, Brazil
[2] Tech Univ Denmark DTU, Dept Photon Engn Foton, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
Nonlinearity compensation; turbo equalization; digital backpropagation; PHASE NOISE COMPENSATION; FIBER; CAPACITY; PROPAGATION; EQUATION; CODES; LIMIT;
D O I
10.1109/JLT.2021.3111095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to track the time-varying intersymbol interference (ISI) coefficients associated with inter-channel nonlinear interference (NLI) model. The estimated channel coefficients are used by a MIMO 2 x 2 soft-input soft-output (SISO) linear minimum mean square error (LMMSE) equalizer to compensate for the time-varying ISI. The SISO LMMSE equalizer and the SISO forward error correction (FEC) decoder exchange extrinsic information in every turbo iteration, allowing the receiver to improve the performance of the channel estimation and the equalization, achieving lower bit-error-rate (BER) values. The proposed scheme is investigated for polarization multiplexed 64QAM and 256QAM, although it applies to any proper modulation format. Extensive numerical results are presented. It is shown that the scheme allows up to 0.7 dB extra gain in effectively received signal-to-noise ratio (SNR) and up to 0.2 bits/symbol/pol in generalized mutual information (GMI), on top of the gain provided by single-channel digital backpropagation.
引用
收藏
页码:7124 / 7134
页数:11
相关论文
共 39 条
[1]   Achievable Information Rates for Fiber Optics: Applications and Computations [J].
Alvarado, Alex ;
Fehenberger, Tobias ;
Chen, Bin ;
Willems, Frans M. J. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (02) :424-439
[2]   Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems [J].
Alvarado, Alex ;
Agrell, Erik ;
Lavery, Domanic ;
Maher, Robert ;
Bayvel, Polina .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (20) :4338-4352
[3]  
[Anonymous], 1997, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing
[4]   Turbo Equalization for Digital Coherent Receivers [J].
Arlunno, Valeria ;
Caballero, Antonio ;
Borkowski, Robert ;
Zibar, Darko ;
Larsen, Knud J. ;
Monroy, Idelfonso Tafur .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (02) :275-284
[5]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[6]   Digital signal processing for fiber nonlinearities [Invited] [J].
Cartledge, John C. ;
Guiomar, Fernando P. ;
Kschischang, Frank R. ;
Liga, Gabriele ;
Yankov, Metodi P. .
OPTICS EXPRESS, 2017, 25 (03) :1916-1936
[7]   Perturbation-Based FEC-Assisted Iterative Nonlinearity Compensation for WDM Systems [J].
da Silva, Edson Porto ;
Yankov, Metodi P. ;
Da Ros, Francesco ;
Morioka, Toshio ;
Oxenlowe, Leif K. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (03) :875-881
[8]   Inter-Channel Nonlinear Interference Noise in WDM Systems: Modeling and Mitigation [J].
Dar, Ronen ;
Feder, Meir ;
Mecozzi, Antonio ;
Shtaif, Mark .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (05) :1044-1053
[9]   Properties of nonlinear noise in long, dispersion-uncompensated fiber links [J].
Dar, Ronen ;
Feder, Meir ;
Mecozzi, Antonio ;
Shtaif, Mark .
OPTICS EXPRESS, 2013, 21 (22) :25685-25699
[10]  
Dejonghe A, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5, CONFERENCE PROCEEDINGS, P1863, DOI 10.1109/ICC.2002.997171