On Newton-type approach for piecewise linear systems

被引:7
|
作者
Chen, Jinhai [1 ]
Agarwal, Ravi P. [2 ]
机构
[1] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA
[2] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Nonnegative matrix; Monotone matrix; Piecewise linear systems; Newton-type methods; Finite iteration; ITERATIVE SOLUTION;
D O I
10.1016/j.laa.2010.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate effective Newton-type methods for solving piecewise linear systems. We prove that under certain relaxed conditions the proposed Newton-type methods converge monotonically and have a finite termination property Moreover, we give some conclusions on the existence of solution for the piecewise linear systems. (C) 2010 Elsevier Inc All rights reserved.
引用
收藏
页码:1463 / 1471
页数:9
相关论文
共 50 条
  • [31] On the election of the damped parameter of a two-step relaxed Newton-type method
    Amat, Sergio
    Busquier, Sonia
    Bermudez, Concepcion
    Alberto Magrenan, A.
    NONLINEAR DYNAMICS, 2016, 84 (01) : 9 - 18
  • [32] Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators
    Amat, Sergio
    Busquier, Sonia
    Bermudez, Concepcion
    Alberto Magrenan, Angel
    ALGORITHMS, 2015, 8 (03) : 669 - 679
  • [33] On the election of the damped parameter of a two-step relaxed Newton-type method
    Sergio Amat
    Sonia Busquier
    Concepción Bermúdez
    Á. Alberto Magreñán
    Nonlinear Dynamics, 2016, 84 : 9 - 18
  • [34] A truly globally convergent feasible Newton-type method for mixed complementarity problems
    Han, D
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (03) : 347 - 360
  • [35] On Local Behavior of Newton-Type Methods Near Critical Solutions of Constrained Equations
    Izmailov, A. F.
    Solodov, M. V.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (02) : 1103 - 1126
  • [36] PARAMETRIC IDENTIFICATION OF PIECEWISE LINEAR SYSTEMS WITH PARTIAL RESPONSE MEASUREMENTS: APPROACH AND VALIDATION
    Hua, Wei
    Lei, Ying
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOLS 1 AND II, 2014, : 1112 - 1120
  • [37] A Unified Lyapunov Approach to Analysis of Oscillations and Stability for Systems With Piecewise Linear Elements
    Hu, Tingshu
    Thibodeau, Thomas
    Teel, Andrew R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (12) : 2864 - 2869
  • [38] Output Regulation of Piecewise Linear Systems
    Zhang, Jianxiong
    Tang, Wansheng
    Li, Hongxia
    Zheng, Pengsheng
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4184 - +
  • [39] Stability of piecewise linear systems revisited
    Sun, Zhendong
    ANNUAL REVIEWS IN CONTROL, 2010, 34 (02) : 221 - 231
  • [40] A damped semismooth Newton method for the Brugnano-Casulli piecewise linear system
    Sun, Zhe
    Wu, Lei
    Liu, Zhe
    BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 569 - 589