On Newton-type approach for piecewise linear systems

被引:7
|
作者
Chen, Jinhai [1 ]
Agarwal, Ravi P. [2 ]
机构
[1] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA
[2] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Nonnegative matrix; Monotone matrix; Piecewise linear systems; Newton-type methods; Finite iteration; ITERATIVE SOLUTION;
D O I
10.1016/j.laa.2010.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate effective Newton-type methods for solving piecewise linear systems. We prove that under certain relaxed conditions the proposed Newton-type methods converge monotonically and have a finite termination property Moreover, we give some conclusions on the existence of solution for the piecewise linear systems. (C) 2010 Elsevier Inc All rights reserved.
引用
收藏
页码:1463 / 1471
页数:9
相关论文
共 50 条
  • [21] A complementarity approach for the computation of periodic oscillations in piecewise linear systems
    Sessa, Valentina
    Iannelli, Luigi
    Vasca, Francesco
    Acary, Vincent
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1255 - 1273
  • [22] A complementarity approach for the computation of periodic oscillations in piecewise linear systems
    Valentina Sessa
    Luigi Iannelli
    Francesco Vasca
    Vincent Acary
    Nonlinear Dynamics, 2016, 85 : 1255 - 1273
  • [23] Using gradient directions to get global convergence of Newton-type methods
    di Serafino, Daniela
    Toraldo, Gerardo
    Viola, Marco
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [24] A Semismooth Newton-Type Method for the Nearest Doubly Stochastic Matrix Problem
    Hu, Hao
    Li, Xinxin
    Im, Haesol
    Wolkowicz, Henry
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1 - 23
  • [25] On a third-order Newton-type method free of bilinear operators
    Amat, S.
    Bermudez, C.
    Busquier, S.
    Plaza, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 639 - 653
  • [26] On error bounds and Newton-type methods for generalized Nash equilibrium problems
    Izmailov, Alexey F.
    Solodov, Mikhail V.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 201 - 218
  • [27] On error bounds and Newton-type methods for generalized Nash equilibrium problems
    Alexey F. Izmailov
    Mikhail V. Solodov
    Computational Optimization and Applications, 2014, 59 : 201 - 218
  • [28] On two high-order families of frozen Newton-type methods
    Amat, S.
    Argyros, I.
    Busquier, S.
    Hernandez-Veron, M. A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (01)
  • [29] Newton-type decomposition methods in large-scale dynamic process simulation
    Borchardt, J
    COMPUTERS & CHEMICAL ENGINEERING, 2001, 25 (7-8) : 951 - 961
  • [30] A GENERAL CONVERGENCE ANALYSIS OF SOME NEWTON-TYPE METHODS FOR NONLINEAR INVERSE PROBLEMS
    Jin, Qinian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 549 - 573