Disruption of Mitochondrial Homeostasis: The Role of PINK1 in Parkinson's Disease

被引:48
作者
Vizziello, Maria [1 ]
Borellini, Linda [2 ]
Franco, Giulia [1 ]
Ardolino, Gianluca [2 ]
机构
[1] Univ Milan, IRCCS Fdn Ca Granda Osped Maggiore Policlin, Dept Pathophysiol & Transplantat, Neurosci Sect, I-20122 Milan, Italy
[2] IRCCS Fdn Ca Granda Osped Maggiore Policlin, Neuropathophysiol Unit, Via Francesco Sforza 35, I-20122 Milan, Italy
关键词
Parkinson's disease; PINK1; mitophagy; mitochondrial quality control; Parkin; EARLY-ONSET PARKINSONISM; DEEP BRAIN-STIMULATION; COMPLEX I ACTIVITY; PINK1/PARKIN-MEDIATED MITOPHAGY; INCREASED SENSITIVITY; PRIMES PARKIN; DNA DELETIONS; MUTATIONS; UBIQUITIN; NEURONS;
D O I
10.3390/cells10113022
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The progressive reduction of the dopaminergic neurons of the substantia nigra is the fundamental process underlying Parkinson's disease (PD), while the mechanism of susceptibility of this specific neuronal population is largely unclear. Disturbances in mitochondrial function have been recognized as one of the main pathways in sporadic PD since the finding of respiratory chain impairment in animal models of PD. Studies on genetic forms of PD have provided new insight on the role of mitochondrial bioenergetics, homeostasis, and autophagy. PINK1 (PTEN-induced putative kinase 1) gene mutations, although rare, are the second most common cause of recessively inherited early-onset PD, after Parkin gene mutations. Our knowledge of PINK1 and Parkin function has increased dramatically in the last years, with the discovery that a process called mitophagy, which plays a key role in the maintenance of mitochondrial health, is mediated by the PINK1/Parkin pathway. In vitro and in vivo models have been developed, supporting the role of PINK1 in synaptic transmission, particularly affecting dopaminergic neurons. It is of paramount importance to further define the role of PINK1 in mitophagy and mitochondrial homeostasis in PD pathogenesis in order to delineate novel therapeutic targets.
引用
收藏
页数:19
相关论文
共 149 条
[51]   Parkinson-related genetics in patients treated with deep brain stimulation [J].
Johansen, K. K. ;
Jorgensen, J. V. ;
White, L. R. ;
Farrer, M. J. ;
Aasly, J. O. .
ACTA NEUROLOGICA SCANDINAVICA, 2011, 123 (03) :201-206
[52]   Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes [J].
Julienne, Hannah ;
Buhl, Edgar ;
Leslie, David S. ;
Hodge, James J. L. .
NEUROBIOLOGY OF DISEASE, 2017, 104 :15-23
[53]   PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity [J].
Kane, Lesley A. ;
Lazarou, Michael ;
Fogel, Adam I. ;
Li, Yan ;
Yamano, Koji ;
Sarraf, Shireen A. ;
Banerjee, Soojay ;
Youle, Richard J. .
JOURNAL OF CELL BIOLOGY, 2014, 205 (02) :143-153
[54]   Genotype-Phenotype Relations for the Parkinson's Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review [J].
Kasten, Meike ;
Hartmann, Corinna ;
Hampf, Jennie ;
Schaake, Susen ;
Westenberger, Ana ;
Vollstedt, Eva-Juliane ;
Balck, Alexander ;
Domingo, Aloysius ;
Vulinovic, Franca ;
Dulovic, Marija ;
Zorn, Ingo ;
Madoev, Harutyun ;
Zehnle, Hanna ;
Lembeck, Christina M. ;
Schawe, Leopold ;
Reginold, Jennifer ;
Huang, Jana ;
Koenig, Inke R. ;
Bertram, Lars ;
Marras, Connie ;
Lohmann, Katja ;
Lill, Christina M. ;
Klein, Christine .
MOVEMENT DISORDERS, 2018, 33 (05) :730-741
[55]   Genetic mutations and functions of PINK1 [J].
Kawajiri, Sumihiro ;
Saiki, Shinji ;
Sato, Shigeto ;
Hattori, Nobutaka .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2011, 32 (10) :573-580
[56]   Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation [J].
Kazlauskaite, Agne ;
Martinez-Torres, R. Julio ;
Wilkie, Scott ;
Kumar, Atul ;
Peltier, Julien ;
Gonzalez, Alba ;
Johnson, Clare ;
Zhang, Jinwei ;
Hope, Anthony G. ;
Peggie, Mark ;
Trost, Matthias ;
van Aalten, Daan M. F. ;
Alessi, Dario R. ;
Prescott, Alan R. ;
Knebel, Axel ;
Walden, Helen ;
Muqit, Miratul M. K. .
EMBO REPORTS, 2015, 16 (08) :939-954
[57]   Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence [J].
Key, Jana ;
Sen, Nesli Ece ;
Arsovic, Aleksandar ;
Kramer, Stella ;
Hulse, Robert ;
Khan, Natasha Nadeem ;
Meierhofer, David ;
Gispert, Suzana ;
Koepf, Gabriele ;
Auburger, Georg .
CELLS, 2020, 9 (10) :1-46
[58]   Parkinson disease, 10 years after its genetic revolution - Multiple clues to a complex disorder [J].
Klein, Christine ;
Schlossmacher, Michael G. .
NEUROLOGY, 2007, 69 (22) :2093-2104
[59]   ENHANCED VULNERABILITY OF PARK6 PATIENT SKIN FIBROBLASTS TO APOPTOSIS INDUCED BY PROTEASOMAL STRESS [J].
Klinkenberg, M. ;
Thurow, N. ;
Gispert, S. ;
Ricciardi, F. ;
Eich, F. ;
Prehn, J. H. M. ;
Auburger, G. ;
Koegel, D. .
NEUROSCIENCE, 2010, 166 (02) :422-434
[60]   Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease [J].
Koentjoro, Brianada ;
Park, Jin-Sung ;
Sue, Carolyn M. .
SCIENTIFIC REPORTS, 2017, 7