Deep generative modeling for volume reconstruction in cryo-electron microscopy

被引:13
作者
Donnat, Claire [1 ]
Levy, Axel [2 ,3 ]
Poitevin, Frederic [3 ]
Zhong, Ellen D. [4 ]
Miolane, Nina [5 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[3] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA USA
[4] Princeton Univ, Dept Comp Sci, Princeton, NJ USA
[5] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家卫生研究院;
关键词
cryoEM; Deep neural networks; Generative models; High-resolution volume reconstruction; MAXIMUM-LIKELIHOOD;
D O I
10.1016/j.jsb.2022.107920
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in cryo-electron microscopy (cryo-EM) for high-resolution imaging of biomolecules in solution have provided new challenges and opportunities for algorithm development for 3D reconstruction. Next-generation volume reconstruction algorithms that combine generative modelling with end-to-end unsupervised deep learning techniques have shown promise, but many technical and theoretical hurdles remain, especially when applied to experimental cryo-EM images. In light of the proliferation of such methods, we propose here a critical review of recent advances in the field of deep generative modelling for cryo-EM reconstruction. The present review aims to (i) provide a unified statistical framework using terminology familiar to machine learning researchers with no specific background in cryo-EM, (ii) review the current methods in this framework, and (iii) outline outstanding bottlenecks and avenues for improvements in the field.
引用
收藏
页数:11
相关论文
共 43 条
[1]   AlphaFold at CASP13 [J].
AlQuraishi, Mohammed .
BIOINFORMATICS, 2019, 35 (22) :4862-4865
[2]  
[Anonymous], 2009, CVPR
[3]  
Bendory T, 2020, IEEE SIGNAL PROC MAG, V37, P58, DOI [10.1109/MSP.2019.2957822, 10.1109/msp.2019.2957822]
[4]  
Bock L.V., 2021, BIORXIV, V2021, DOI [10.08.463658, DOI 10.1101/2021.10.08.463658, 10.1101/ 2021.10.08.463658]
[5]  
Boyd S., 2004, Convex optimization
[6]   Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM [J].
Chen, Muyuan ;
Ludtke, Steven J. .
NATURE METHODS, 2021, 18 (08) :930-+
[7]  
Zhong ED, 2020, Arxiv, DOI [arXiv:1909.05215, 10.48550/arXiv.1909.05215]
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]  
Deng L., 2012, IEEE Signal Processing Magazine
[10]  
Dill K, 2010, Garland Science