Machine learning and deep learning methods that use omics data for metastasis prediction

被引:104
作者
Albaradei, Somayah [1 ,2 ]
Thafar, Maha [1 ,3 ,5 ]
Alsaedi, Asim [4 ]
Van Neste, Christophe [1 ]
Gojobori, Takashi [1 ,6 ]
Essack, Magbubah [1 ]
Gao, Xin [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Computat Biosci Res Ctr CBRC, Thuwal 239556900, Saudi Arabia
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
[3] Taif Univ, Collage Computers & Informat Technol, At Taif, Saudi Arabia
[4] King Saud bin Abdulaziz Univ Hlth Sci, Jeddah, Saudi Arabia
[5] King Abdul Aziz Med City, Jeddah, Saudi Arabia
[6] King Abdullah Univ Sci & Technol KAUST, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia
关键词
Cancer; Metastasis; Machine learning; Deep learning; Artificial intelligence; CANCER; NORMALIZATION; CLASSIFIER; TRANSITION; ALGORITHM; NETWORKS; INVASION;
D O I
10.1016/j.csbj.2021.09.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowing metastasis is the primary cause of cancer-related deaths, incentivized research directed towards unraveling the complex cellular processes that drive the metastasis. Advancement in technology and specifically the advent of high-throughput sequencing provides knowledge of such processes. This knowledge led to the development of therapeutic and clinical applications, and is now being used to pre-dict the onset of metastasis to improve diagnostics and disease therapies. In this regard, predicting metastasis onset has also been explored using artificial intelligence approaches that are machine learn-ing, and more recently, deep learning-based. This review summarizes the different machine learning and deep learning-based metastasis prediction methods developed to date. We also detail the different types of molecular data used to build the models and the critical signatures derived from the different methods. We further highlight the challenges associated with using machine learning and deep learning methods, and provide suggestions to improve the predictive performance of such methods. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:5008 / 5018
页数:11
相关论文
共 89 条
[1]   Machine learning in clinical decision making [J].
Adlung, Lorenz ;
Cohen, Yotam ;
Mor, Uria ;
Elinav, Eran .
MED, 2021, 2 (06) :642-665
[2]   Sparse feature selection for classification and prediction of metastasis in endometrial cancer [J].
Ahsen, Mehmet Eren ;
Boren, Todd P. ;
Singh, Nitin K. ;
Misganaw, Burook ;
Mutch, David G. ;
Moore, Kathleen N. ;
Backes, Floor J. ;
McCourt, Carolyn K. ;
Lea, Jayanthi S. ;
Miller, David S. ;
White, Michael A. ;
Vidyasagar, Mathukumalli .
BMC GENOMICS, 2017, 18
[3]   MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data [J].
Albaradei, Somayah ;
Napolitano, Francesco ;
Thafar, Maha A. ;
Gojobori, Takashi ;
Essack, Magbubah ;
Gao, Xin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :4404-4411
[4]   Metastatic State of Colorectal Cancer can be Accurately Predicted with Methylome [J].
Albaradei, Somayah ;
Thafar, Maha ;
Van Neste, Christophe ;
Essack, Magbubah ;
Bajic, Vladimir B. .
PROCEEDINGS OF 2019 6TH INTERNATIONAL CONFERENCE BIOINFORMATICS RESEARCH AND APPLICATIONS (ICBRA 2019), 2019, :125-130
[5]   The role of EMT and MET in cancer dissemination [J].
Banyard, Jacqueline ;
Bielenberg, Diane R. .
CONNECTIVE TISSUE RESEARCH, 2015, 56 (05) :403-413
[6]  
Baptista D, 2020, BRIEF BIOINFORM
[7]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[8]   Prediction and Analysis of Skin Cancer Progression using Genomics Profiles of Patients [J].
Bhalla, Sherry ;
Kaur, Harpreet ;
Dhall, Anjali ;
Raghava, Gajendra P. S. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board [J].
Bluemke, David A. ;
Moy, Linda ;
Bredella, Miriam A. ;
Ertl-Wagner, Birgit B. ;
Fowler, Kathryn J. ;
Goh, Vicky J. ;
Halpern, Elkan F. ;
Hess, Christopher P. ;
Schiebler, Mark L. ;
Weiss, Clifford R. .
RADIOLOGY, 2020, 294 (03) :487-489
[10]   Gene Expression Profiles for Predicting Metastasis in Breast Cancer: A Cross-Study Comparison of Classification Methods [J].
Burton, Mark ;
Thomassen, Mads ;
Tan, Qihua ;
Kruse, Torben A. .
SCIENTIFIC WORLD JOURNAL, 2012,