Entropy Engineering Realized Ultralow Thermal Conductivity and High Seebeck Coefficient in Lead-Free SnTe

被引:17
作者
Yang, Junxuan [1 ,2 ]
Cai, Jianfeng [2 ,3 ]
Wang, Ruoyu [2 ,3 ]
Guo, Zhe [2 ,3 ]
Tan, Xiaojian [2 ,3 ]
Liu, Guoqiang [2 ,3 ]
Ge, Zhenhua [1 ]
Jiang, Jun [2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
entropy engineering; thermoelectric; thermal conductivity; Seebeck coefficient; SnTe; electrical conductivity; total thermal; HIGH THERMOELECTRIC PERFORMANCE; RESONANT STATE; BAND; SCATTERING; ALLOYS;
D O I
10.1021/acsaem.1c02448
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin telluride is a promising lead-free IV-VI thermoelectric compound, while its intrinsic high thermal conductivity limits the further improvement of performance. In this work, the strategy of high-entropy engineering is implemented to reduce the thermal conductivity of SnTe. To increase the configuration entropy of the compound, the solid solutions of (AgxSbxSn1-2x)(SxSexTe1-2x) are successfully synthesized. In (Ag0.15Sb0.15Sn0.7)(S0.15Se0.15Te0.7), the obtained thermal conductivity reaches a very low value of 1.27 W m(-1) K-1 at 300 K, which is 85% reduced relative to the pristine SnTe. In spite of the increase of carrier concentration, the Seebeck coefficients of solid solutions are enlarged, originating in the distortion of electron density of states. Finally, the maximum ZT value of 1.02 is reached in (Ag0.15Sb0.15Sn0.7)(S0.15Se0.15Te0.7) at 850 K. This work suggests that high-entropy engineering is an effective strategy for thermoelectric materials.
引用
收藏
页码:12738 / 12744
页数:7
相关论文
共 38 条
[1]   The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures [J].
Banik, Ananya ;
Vishal, Badri ;
Perumal, Suresh ;
Datta, Ranjan ;
Biswas, Kanishka .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2011-2019
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   Thermoelectric performance of PbSnTeSe high-entropy alloys [J].
Fan, Zhao ;
Wang, Hui ;
Wu, Yuan ;
Liu, Xiongjun ;
Lu, Zhaoping .
MATERIALS RESEARCH LETTERS, 2017, 5 (03) :187-194
[5]   Enhanced thermoelectric performance of SnTe alloy with Ce and Li co-doping [J].
Guo, F. ;
Cui, B. ;
Guo, M. ;
Wang, J. ;
Cao, J. ;
Cai, W. ;
Sui, J. .
MATERIALS TODAY PHYSICS, 2019, 11
[6]   Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress-Induced Lotus-Seedpod-Like Grain Boundaries [J].
Guo, Fengkai ;
Cui, Bo ;
Li, Chun ;
Wang, Yumei ;
Cao, Jian ;
Zhang, Xinghong ;
Ren, Zhifeng ;
Cai, Wei ;
Sui, Jiehe .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (31)
[7]   Resonant levels in bulk thermoelectric semiconductors [J].
Heremans, Joseph P. ;
Wiendlocha, Bartlomiej ;
Chamoire, Audrey M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5510-5530
[8]   Entropy Engineering of SnTe: Multi-Principal-Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State-of-the-Art Thermoelectric Performance [J].
Hu, Lipeng ;
Zhang, Yang ;
Wu, Haijun ;
Li, Junqin ;
Li, Yu ;
Mckenna, Myles ;
He, Jian ;
Liu, Fusheng ;
Pennycook, Stephen John ;
Zeng, Xierong .
ADVANCED ENERGY MATERIALS, 2018, 8 (29)
[9]   High-entropy-stabilized chalcogenides with high thermoelectric performance [J].
Jiang, Binbin ;
Yu, Yong ;
Cui, Juan ;
Liu, Xixi ;
Xie, Lin ;
Liao, Jincheng ;
Zhang, Qihao ;
Huang, Yi ;
Ning, Shoucong ;
Jia, Baohai ;
Zhu, Bin ;
Bai, Shengqiang ;
Chen, Lidong ;
Pennycook, Stephen J. ;
He, Jiaqing .
SCIENCE, 2021, 371 (6531) :830-+
[10]  
Kato M, 2016, NAT COMMUN, V7, DOI [10.1038/ncomms12864, 10.1038/ncomms13828]