Global Existence and Blow-up of Solutions for a System of Fractional Wave Equations

被引:4
作者
Ahmad, Bashir [1 ]
Alsaedi, Ahmed [1 ]
Berbiche, Mohamed [2 ]
Kirane, Mokhtar [1 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Biskra Univ, Lab Math Anal Probabil & Optimizat, BP 145, Biskra 07000, Algeria
[3] Khalifa Univ Sci & Technol, Coll Art & Sci, Dept Math, Abu Dhabi, U Arab Emirates
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2022年 / 26卷 / 01期
关键词
coupled fractional-wave equations; polynomial nonlinearities; global solution; blow-up; CRITICAL EXPONENTS; FUJITA-TYPE; DIFFUSION; NONEXISTENCE; BEHAVIOR;
D O I
10.11650/tjm/210804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Cauchy problem for a 2 x 2-system of weakly coupled semi-linear fractional wave equations with polynomial nonlinearities posed in R(+)xR(N). Under appropriate conditions on the exponents and the fractional orders of the time derivatives, it is shown that there exists a threshold value of the dimension N, for which, small data-global solutions as well as finite time blowing-up solutions exist. Furthermore, we investigate the L-infinity-decay estimates of global solutions.
引用
收藏
页码:103 / 135
页数:33
相关论文
共 34 条
[1]   Critical exponents of fujita type for inhomogeneous parabolic equations and systems [J].
Bandle, C ;
Levine, HA ;
Zhang, QS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :624-648
[2]  
Berbiche M, 2012, MEM DIFFER EQU MATH, V56, P37
[3]   Existence and blow-up of solutions for damped wave system with nonlinear memory [J].
Berbiche, Mohamed .
APPLICABLE ANALYSIS, 2015, 94 (12) :2535-2564
[4]   Modified Szabo's wave equation models for lossy media obeying frequency power law [J].
Chen, W ;
Holm, S .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 114 (05) :2570-2574
[5]   Existence and symmetries of solutions in Besov-Morrey spaces for a semilinear heat-wave type equation [J].
de Almeida, Marcelo F. ;
Precioso, Juliana C. P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :338-355
[6]  
de Almeida MF, 2012, DIFFER INTEGRAL EQU, V25, P957
[7]  
del Santo D, 1998, DIFF EQUAT+, V34, P1157
[8]   Blow-up of solutions of some nonlinear hyperbolic systems [J].
Deng, K .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (03) :807-820
[10]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126