Preparation and characterization of epoxy-based composite with multilayered structure and high thermal conductivity

被引:17
作者
Chen, Lu [1 ,2 ,3 ]
Xiao, Chao [1 ,2 ,3 ]
Tang, Yunlu [1 ,2 ,3 ]
Zhang, Xian [1 ,3 ]
Zheng, Kang [1 ,3 ]
Tian, Xingyou [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Appl Technol, Hefei Inst Phys Sci, Hefei 230088, Peoples R China
[2] Univ Sci & Technol China, Hefei 3006, Peoples R China
[3] Chinese Acad Sci, Key Lab Photovolta & Energy Conservat Mat, Hefei, Peoples R China
关键词
epoxy; h-BN; multilayered structure; thermally conductive path; thermal conductivity; HEXAGONAL BORON-NITRIDE; DYNAMIC-MECHANICAL PROPERTIES; POLYMER COMPOSITES; HIGH-EFFICIENCY; NANOCOMPOSITES; ORIENTATION; MATRIX; FILMS; ALN; NANOMATERIALS;
D O I
10.1088/2053-1591/ab1370
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A multilayered thermally conductive composite with ternary system of heat conductive fillers-thermally conductive films-epoxy matrix was prepared through a facile process of layer-by-layer stacking, pre-curing and hot-pressing. The thermally conductive films (boron nitride nanosheets/cellulose nanofiber) with high in-plane thermal conductivities were employed as the heat conductive medium, while the platelet-shaped hexagonal boron nitride and the particle-shaped aluminum nitride were utilized as heat conductive fillers for enhancing the perfection of the thermally conductive network. A horizontally heat conductive network was constructed within the epoxy matrix under the joint contribution of the horizontally aligned hexagonal boron nitride platelets and the parallelly spread thermally conductive films through hot-pressing. The aluminum nitride particles acted as linking points, filling the gaps between hexagonal boron nitride platelets, while constructing the thermally conductive path in the vertical direction. Thanks to the introduction of thermally conductive films and the good orientation of boron nitride platelets, the in-plane thermal conductivities of the composites increased with increasing of film layer number. With film layer number of 9, and filler content of 30 wt% (aluminum nitride/boron nitride (1:1)), the in-plane thermal conductivity of the composite was as high as 8.53Wm(-1) * K, which showed an enhancement of 4165% than that of the pure epoxy matrix, and an improvement of 613% compared to that of the composite without multilayered structure. Meanwhile, the out-of-plane thermal conductivity exhibited a slightly deceased tendency as film layer number increased, but it still reached 0.87 Wm(-1) * K with film layer number of 9, which was 335% higher than that of the pure epoxy. In addition, the multilayered composite also possessed good thermal stability, enhanced stiffness, as well as low dielectric constant and dielectric loss, which shows a potential application in thermal management for packaging of integrated circuit and microelectronic devices.
引用
收藏
页数:11
相关论文
共 44 条
[1]  
[Anonymous], 2021, ADV MAT PRINTED FLEX
[2]   Thermal conductivity of vertically aligned boron nitride nanotubes [J].
Belkerk, Boubakeur Essedik ;
Achour, Amine ;
Zhang, Dongyan ;
Sahli, Salah ;
Djouadi, M-Abdou ;
Yap, Yoke Khin .
APPLIED PHYSICS EXPRESS, 2016, 9 (07)
[3]   Review of thermal conductivity in composites: Mechanisms, parameters and theory [J].
Burger, N. ;
Laachachi, A. ;
Ferriol, M. ;
Lutz, M. ;
Toniazzo, V. ;
Ruch, D. .
PROGRESS IN POLYMER SCIENCE, 2016, 61 :1-28
[4]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[5]   Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets [J].
Cho, Hong-Baek ;
Nakayama, Tadachika ;
Suematsu, Hisayuki ;
Suzuki, Tsuneo ;
Jiang, Weihua ;
Niihara, Koichi ;
Song, Eunpil ;
Eom, Nu Si A. ;
Kim, Seil ;
Choa, Yong-Ho .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 129 :205-213
[6]   Boron Nitride Nanotubes and Nanosheets [J].
Golberg, Dmitri ;
Bando, Yoshio ;
Huang, Yang ;
Terao, Takeshi ;
Mitome, Masanori ;
Tang, Chengchun ;
Zhi, Chunyi .
ACS NANO, 2010, 4 (06) :2979-2993
[7]   Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN [J].
Hu, Jiantao ;
Huang, Yun ;
Zeng, Xiaoliang ;
Li, Qiang ;
Ren, Linlin ;
Sun, Rong ;
Xu, Jian-Bin ;
Wong, Ching-Ping .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 160 :127-137
[8]   A Review of Dielectric Polymer Composites With High Thermal Conductivity [J].
Huang, Xingyi ;
Jiang, Pingkai ;
Tanaka, Toshikatsu .
IEEE ELECTRICAL INSULATION MAGAZINE, 2011, 27 (04) :8-16
[9]   Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement [J].
Kim, Kiho ;
Ju, Hyun ;
Kim, Jooheon .
CERAMICS INTERNATIONAL, 2016, 42 (07) :8657-8663
[10]   Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field [J].
Kim, Kiho ;
Kim, Jooheon .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 100 :29-36