BLOCKING SETS FOR CYCLES AND PATHS DESIGNS

被引:1
作者
Bonacini, Paola [1 ]
Marino, Lucia [1 ]
机构
[1] Univ Catania, Viale A Doria 6, I-95125 Catania, Italy
关键词
design; path; cycle; SYSTEMS;
D O I
10.2298/AADM181108008B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study blocking sets for C-4, P-3 and P-5-designs. In the case of C-4-designs and P-3-designs we determine the cases in which the blocking sets have the largest possible range of cardinalities. These designs are called largely blocked. Moreover, a blocking set T for a G-design is called perfect if in any block the number of edges between elements of T and elements in the complement is equal to a constant. In this paper, we consider perfect blocking sets for C-4-designs and P-5-designs.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 17 条
[1]   A NOTE ON THE DECOMPOSITION OF GRAPHS INTO ISOMORPHIC MATCHINGS [J].
ALON, N .
ACTA MATHEMATICA HUNGARICA, 1983, 42 (3-4) :221-223
[2]   Blocking Sets in (υ, {2, 4}, 1)-Designs [J].
Batten L.M. ;
Coolsaet K. ;
Street A.P. .
Designs, Codes and Cryptography, 1997, 10 (3) :309-314
[3]  
Batten L. M., 1994, C NUMER, V99, P139
[4]  
Bonacini P., ART DISCRETE APPL MA
[5]   Tight blocking sets in some maximum packings of λKn [J].
Chang, Yanxun ;
Lo Faro, Giovanni ;
Tripodi, Antoinette .
DISCRETE MATHEMATICS, 2008, 308 (2-3) :427-438
[6]  
ELZANATI SI, 1993, ARS COMBINATORIA, V35, P237
[7]   2-COLORINGS IN S(T, T + 1, V) [J].
GIONFRIDDO, M ;
LO FARO, G .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :263-268
[8]  
Gionfriddo M, 2004, DISCRETE MATH, V283, P249, DOI 10.1016/j.disc.2003.11.006
[9]  
Gionfriddo M., 2013, APPL MATH SCI, V7, P6779
[10]  
Gionfriddo M., 2013, APPL MATH SCI, V7, P4549