Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites

被引:72
作者
Fortunati, E. [1 ]
D'Angelo, F. [2 ]
Martino, S. [2 ]
Orlacchio, A. [2 ]
Kenny, J. M. [1 ,3 ]
Armentano, I. [1 ]
机构
[1] Univ Perugia, NIPLAB, UdR INSTM, Ctr Mat Sci & Technol, Terni, Italy
[2] Univ Perugia, Dept Expt Med & Biochem Sci, Sect Biochem & Mol Biol, Terni, Italy
[3] CSIC, Inst Polymer Sci & Technol, Madrid, Spain
关键词
MESENCHYMAL STEM-CELLS; ELECTRICAL-CONDUCTIVITY; METAL NANOPARTICLES; NANOCOMPOSITES; POLYMER; POLY(EPSILON-CAPROLACTONE); FABRICATION; FIELDS;
D O I
10.1016/j.carbon.2011.02.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article fabricates and characterizes the combination of single walled carbon nanotubes (SWCNTs) and silver nanoparticles (Ag) with a biodegradable polymer matrix. Different SWCNT amount were mixed with Ag nanoparticles and introduced in the poly(epsilon-caprolactone) (PCL) polymer matrix by solvent cast process. Nanostructure synergistic effects were evaluated in terms of morphological, electrical, dielectrical, mechanical and biological properties of binary PCL/Ag, PCL/SWCNTs and ternary PCL/Ag/SWCNTs composites. Results showed a good dispersion of nanostructures in the PCL and an increase of Young modulus with silver content in the binary systems. The PCL/Ag composites exhibited poor electrical properties, while in PCL/Ag/SWCNTs ternary films higher values of conductivity were measured compared to both binary composites. Results obtained in this research indicate that Ag particles facilitate the formation of conductive pathways in the presence of SWCNTs, they act as conductive bridges among nanotube bundles and facilitate the electron transfer. The addition of a small percentage of SWCNTs promoted significantly the electrical properties of PCL/Ag nanohybrid films. Biocompatibility of binary and ternary composites, evaluated by human mesenchymal stem cells-bone marrow derived (hBM-MSCs), suggests that the combination of Ag nanoparticles and SWCNTs with a biodegradable polymer opens new perspectives for biomedical applications. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2370 / 2379
页数:10
相关论文
共 50 条
[31]   Surface Modification of Multiwalled Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl methacrylate) Composites [J].
Ezzeddine, Alaa ;
Chen, Zhuo ;
Schanze, Kirk S. ;
Khashab, Niveen M. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) :12903-12913
[32]   Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(?-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement [J].
Tao, Jun-Ru ;
Luo, Cheng-Long ;
Huang, Ming-Lu ;
Weng, Yun-Xuan ;
Wang, Ming .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 164
[33]   Ultrasound promoted synthesis and properties of chitosan nanocomposites containing carbon nanotubes and silver nanoparticles [J].
Bibi, Saira ;
Jamil, Arifa ;
Yasin, Tariq ;
Rafiq, Muhammad Aftab ;
Nawaz, Mohsan ;
Price, Gareth J. .
EUROPEAN POLYMER JOURNAL, 2018, 105 :297-303
[34]   Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes [J].
Ashrafi, Behnam ;
Jakubinek, Michael B. ;
Martinez-Rubi, Yadienka ;
Rahmat, Meysam ;
Djokic, Drazen ;
Laqua, Kurtis ;
Park, Daesun ;
Kim, Keun-Su ;
Simard, Benoit ;
Yousefpour, Ali .
ACTA ASTRONAUTICA, 2017, 141 :57-63
[35]   A study of conductive hydrogel composites of pH-responsive microgels and carbon nanotubes [J].
Cui, Zhengxing ;
Zhou, Mi ;
Greensmith, Paula J. ;
Wang, Wenkai ;
Hoyland, Judith A. ;
Kinloch, Ian A. ;
Freemont, Tony ;
Saunders, Brian R. .
SOFT MATTER, 2016, 12 (18) :4142-4153
[36]   Highly thermally conductive carbon nanotubes pillared exfoliated graphite/polyimide composites [J].
Guo, Yongqiang ;
Wang, Shuangshuang ;
Ruan, Kunpeng ;
Zhang, Haitian ;
Gu, Junwei .
NPJ FLEXIBLE ELECTRONICS, 2021, 5 (01)
[37]   Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology [J].
Cebeci, Huelya ;
de Villoria, Roberto Guzman ;
Hart, A. John ;
Wardle, Brian L. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) :2649-2656
[38]   Nano-silver modified carbon nanotubes to reinforce the copper matrix composites and their mechanical properties [J].
Yang, Guangjie ;
Wang, Ranran ;
Fang, Dong ;
Hu, Te ;
Bao, Chongxi ;
Yi, Jianhong .
ADVANCED POWDER TECHNOLOGY, 2022, 33 (08)
[39]   Carbonized Cellulose Nanofibril with Individualized Fibrous Morphology: toward Multifunctional Applications in Polycaprolactone Conductive Composites [J].
Dong, Ju ;
Huang, Xingyan ;
Zhao, Guang-Lin ;
Gwon, Jaegyoung ;
Youe, Won-Jae ;
Wu, Qinglin .
ACS APPLIED BIO MATERIALS, 2021, 4 (06) :5169-5179
[40]   Comparison of new conductive adhesives based on silver and carbon nanotubes for solar cells interconnection [J].
Zemen, Y. ;
Schulz, S. C. ;
Trommler, H. ;
Buschhorn, S. T. ;
Bauhofer, W. ;
Schulte, K. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 109 :155-159