Evidence of nodal gap structure in the basal plane of the FeSe superconductor

被引:20
作者
Biswas, Pabitra K. [1 ]
Kreisel, Andreas [2 ]
Wang, Qisi [3 ,4 ]
Adroja, Devashibhai T. [1 ,5 ]
Hillier, Adrian D. [1 ]
Zhao, Jun [3 ,4 ]
Khasanov, Rustem [6 ]
Orain, Jean-Christophe [6 ]
Amato, Alex [6 ]
Morenzoni, Elvezio [6 ]
机构
[1] STFC Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Harwell Campus, Didcot OX11 0QX, Oxon, England
[2] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
[3] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[5] Univ Johannesburg, Phys Dept, Highly Correlated Matter Res Grp, POB 524, ZA-2006 Auckland Pk, South Africa
[6] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland
基金
中国国家自然科学基金;
关键词
MAGNETIC PENETRATION DEPTH; MU-SR; IRON; STATE;
D O I
10.1103/PhysRevB.98.180501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Identifying the symmetry of the wave function describing the Cooper pairs is pivotal in understanding the origin of high-temperature superconductivity in iron-based superconductors. Despite nearly a decade of intense investigation, the answer to this question remains elusive. Here, we use the muon spin rotation/relaxation (mu SR) technique to investigate the underlying symmetry of the pairing state of the FeSe superconductor, the basic building block of all iron-chalcogenide superconductors. Contrary to earlier mu SR studies on powders and crystals, we show that while the superconducting gap is most probably anisotropic but nodeless along the crystallographic c axis, it is nodal in the ab plane, as indicated by the linear increase of the superfluid density at low temperature. We further show that the superconducting properties of FeSe display a less pronounced anisotropy than expected.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe [J].
Abdel-Hafiez, M. ;
Ge, J. ;
Vasiliev, A. N. ;
Chareev, D. A. ;
Van de Vondel, J. ;
Moshchalkov, V. V. ;
Silhanek, A. V. .
PHYSICAL REVIEW B, 2013, 88 (17)
[2]   Nematic pairing from orbital-selective spin fluctuations in FeSe [J].
Benfatto, Lara ;
Valenzuela, Belen ;
Fanfarillo, Laura .
NPJ QUANTUM MATERIALS, 2018, 3
[3]   Nematicity, magnetism and superconductivity in FeSe [J].
Bohmer, Anna E. ;
Kreisel, Andreas .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (02)
[4]   Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character [J].
Bourgeois-Hope, P. ;
Chi, S. ;
Bonn, D. A. ;
Liang, R. ;
Hardy, W. N. ;
Wolf, T. ;
Meingast, C. ;
Doiron-Leyraud, N. ;
Taillefer, Louis .
PHYSICAL REVIEW LETTERS, 2016, 117 (09)
[5]   FLUX DISTRIBUTION AND PENETRATION DEPTH MEASURED BY MUON SPIN ROTATION IN HIGH-TC SUPERCONDUCTORS [J].
BRANDT, EH .
PHYSICAL REVIEW B, 1988, 37 (04) :2349-2352
[6]   VORTEX LATTICE STRUCTURES IN UNIAXIAL SUPERCONDUCTORS [J].
CAMPBELL, LJ ;
DORIA, MM ;
KOGAN, VG .
PHYSICAL REVIEW B, 1988, 38 (04) :2439-2443
[7]   Magnetic penetration depth of MgB2 [J].
Carrington, A ;
Manzano, F .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 385 (1-2) :205-214
[8]   IRON-BASED SUPERCONDUCTORS, seven years later [J].
Chubukov, Andrey ;
Hirschfeld, Peter J. .
PHYSICS TODAY, 2015, 68 (06) :46-52
[9]   Multigap nodeless superconductivity in FeSex: Evidence from quasiparticle heat transport [J].
Dong, J. K. ;
Guan, T. Y. ;
Zhou, S. Y. ;
Qiu, X. ;
Ding, L. ;
Zhang, C. ;
Patel, U. ;
Xiao, Z. L. ;
Li, S. Y. .
PHYSICAL REVIEW B, 2009, 80 (02)
[10]   London penetration depth in the tight binding approximation: orthorhombic distortion and oxygen isotope effects in cuprates [J].
Eremin, M. V. ;
Larionov, I. A. ;
Lyubin, I. E. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (18)