Surface Chemistry Impact on the Light Absorption by Colloidal Quantum Dots

被引:14
作者
Giansante, Carlo [1 ]
机构
[1] Carlo Giansante CNR NANOTEC, Ist Nanotecnol, Via Monteroni, I-73100 Lecce, Italy
关键词
Colloidal Nanocrystals; Ligands; Light Absorption; Quantum Dots; Surface Chemistry; OPTICAL-PROPERTIES; LIGAND-EXCHANGE; PEROVSKITE NANOCRYSTALS; EXTINCTION COEFFICIENT; DIELECTRIC CONFINEMENT; EXCITON CONFINEMENT; CROSS-SECTION; SOLAR-CELLS; CDSE; SIZE;
D O I
10.1002/chem.202102168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
At the size scale at which quantum confinement effects arise in inorganic semiconductors, the materials' surface-to-volume ratio is intrinsically high. This consideration sets surface chemistry as a powerful tool to exert further control on the electronic structure of the inorganic semiconductors. Among the materials that experience the quantum confinement regime, those prepared via colloidal synthetic procedures (the colloidal quantum dots - and wires and wells, too -) are prone to undergo surface reactions in the solution phase and thus represent an ideal framework to study the ensemble impact of surface chemistry on the materials' electronic structure. It is here discussed such an impact at the ground state by using the absorption spectrum of the colloidal quantum dots as a descriptor. The experiments show that the chemical species (the ligands) at the colloidal quantum dot surface induce changes to the optical band gap, the absorption coefficient at all wavelengths, and the ionization potential. These evidences point to a description of the colloidal quantum dot (the ligand/core adduct) as an indecomposable species, in which the orbitals localized on the ligands and the core mix in each other's electric field. This description goes beyond conventional models that conceive the ligands on the basis of pure electrostatic arguments (i. e., either as a dielectric shell or as electric dipoles) or as a mere potential energy barrier at the core boundaries.
引用
收藏
页码:14359 / 14369
页数:11
相关论文
共 75 条
[11]   Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals [J].
De Roo, Jonathan ;
Ibanez, Maria ;
Geiregat, Pieter ;
Nedelcu, Georgian ;
Walravens, Willem ;
Maes, Jorick ;
Martins, Jose C. ;
Van Driessche, Isabel ;
Koyalenko, Maksym V. ;
Hens, Zeger .
ACS NANO, 2016, 10 (02) :2071-2081
[12]   Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior [J].
Debellis, Doriana ;
Gigli, Giuseppe ;
ten Brinck, Stephanie ;
Infante, Ivan ;
Giansante, Carlo .
NANO LETTERS, 2017, 17 (02) :1248-1254
[13]   Shape-Selective Optical Transformations of CdSe Nanoplatelets Driven by Halide Ion Ligand Exchange [J].
Diroll, Benjamin T. ;
Schaller, Richard D. .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3556-3563
[14]   Nanocrystal Quantum Dots: From Discovery to Modern Development [J].
Efros, Alexander L. ;
Brus, Louis E. .
ACS NANO, 2021, 15 (04) :6192-6210
[15]   Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink [J].
Fischer, Armin ;
Rollny, Lisa ;
Pan, Jun ;
Carey, Graham H. ;
Thon, Susanna M. ;
Hoogland, Sjoerd ;
Voznyy, Oleksandr ;
Zhitomirsky, David ;
Kim, Jin Young ;
Bakr, Osman M. ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2013, 25 (40) :5742-+
[16]   Control of Exciton Confinement in Quantum Dot-Organic Complexes through Energetic Alignment of Interfacial Orbitals [J].
Frederick, Matthew T. ;
Amin, Victor A. ;
Swenson, Nathaniel K. ;
Ho, Andrew Y. ;
Weiss, Emily A. .
NANO LETTERS, 2013, 13 (01) :287-292
[17]   A Molecule to Detect and Perturb the Confinement of Charge Carriers in Quantum Dots [J].
Frederick, Matthew T. ;
Amin, Victor A. ;
Cass, Laura C. ;
Weiss, Emily A. .
NANO LETTERS, 2011, 11 (12) :5455-5460
[18]   Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand [J].
Frederick, Matthew T. ;
Weiss, Emily A. .
ACS NANO, 2010, 4 (06) :3195-3200
[19]   Library Design of Ligands at the Surface of Colloidal Nanocrystals [J].
Giansante, Carlo .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (08) :1458-1467
[20]   Enhancing light absorption by colloidal metal chalcogenide quantum dots via chalcogenol(ate) surface ligands [J].
Giansante, Carlo .
NANOSCALE, 2019, 11 (19) :9478-9487