Surface Chemistry Impact on the Light Absorption by Colloidal Quantum Dots

被引:12
作者
Giansante, Carlo [1 ]
机构
[1] Carlo Giansante CNR NANOTEC, Ist Nanotecnol, Via Monteroni, I-73100 Lecce, Italy
关键词
Colloidal Nanocrystals; Ligands; Light Absorption; Quantum Dots; Surface Chemistry; OPTICAL-PROPERTIES; LIGAND-EXCHANGE; PEROVSKITE NANOCRYSTALS; EXTINCTION COEFFICIENT; DIELECTRIC CONFINEMENT; EXCITON CONFINEMENT; CROSS-SECTION; SOLAR-CELLS; CDSE; SIZE;
D O I
10.1002/chem.202102168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
At the size scale at which quantum confinement effects arise in inorganic semiconductors, the materials' surface-to-volume ratio is intrinsically high. This consideration sets surface chemistry as a powerful tool to exert further control on the electronic structure of the inorganic semiconductors. Among the materials that experience the quantum confinement regime, those prepared via colloidal synthetic procedures (the colloidal quantum dots - and wires and wells, too -) are prone to undergo surface reactions in the solution phase and thus represent an ideal framework to study the ensemble impact of surface chemistry on the materials' electronic structure. It is here discussed such an impact at the ground state by using the absorption spectrum of the colloidal quantum dots as a descriptor. The experiments show that the chemical species (the ligands) at the colloidal quantum dot surface induce changes to the optical band gap, the absorption coefficient at all wavelengths, and the ionization potential. These evidences point to a description of the colloidal quantum dot (the ligand/core adduct) as an indecomposable species, in which the orbitals localized on the ligands and the core mix in each other's electric field. This description goes beyond conventional models that conceive the ligands on the basis of pure electrostatic arguments (i. e., either as a dielectric shell or as electric dipoles) or as a mere potential energy barrier at the core boundaries.
引用
收藏
页码:14359 / 14369
页数:11
相关论文
共 75 条
[1]   HYDROGENIC IMPURITY LEVELS, DIELECTRIC-CONSTANT, AND COULOMB CHARGING EFFECTS IN SILICON CRYSTALLITES [J].
ALLAN, G ;
DELERUE, C ;
LANNOO, M ;
MARTIN, E .
PHYSICAL REVIEW B, 1995, 52 (16) :11982-11988
[2]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[3]   Ligand Induced Spectral Changes in CdSe Quantum Dots [J].
Azpiroz, Jon M. ;
De Angelis, Filippo .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (35) :19736-19745
[4]   Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency [J].
Barkhouse, D. Aaron R. ;
Pattantyus-Abraham, Andras G. ;
Levina, Larissa ;
Sargent, Edward H. .
ACS NANO, 2008, 2 (11) :2356-2362
[5]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[6]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[8]   Chalcogenol Ligand Toolbox for CdSe Nanocrystals and Their Influence on Exciton Relaxation Pathways [J].
Buckley, Jannise J. ;
Couderc, Elsa ;
Greaney, Matthew J. ;
Munteanu, James ;
Riche, Carson T. ;
Bradforth, Stephen E. ;
Brutchey, Richard L. .
ACS NANO, 2014, 8 (03) :2512-2521
[9]   Size-dependent extinction coefficients of PbS quantum dots [J].
Cademartiri, Ludovico ;
Montanari, Erica ;
Calestani, Gianluca ;
Migliori, Andrea ;
Guagliardi, Antonietta ;
Ozin, Geoffrey A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (31) :10337-10346
[10]   Optical Properties of Zincblende Cadmium Selenide Quantum Dots [J].
Capek, Richard Karel ;
Moreels, Iwan ;
Lambert, Karel ;
De Muynck, David ;
Zhao, Qiang ;
Vantomme, Andre ;
Vanhaecke, Frank ;
Hens, Zeger .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6371-6376