Multiple-trait random regression modeling of feed efficiency in US Holsteins

被引:12
作者
Khanal, P. [1 ]
Gaddis, K. L. Parker [2 ]
Vandehaar, M. J. [1 ]
Weigel, K. A. [3 ]
White, H. M. [3 ]
Penagaricano, F. [3 ]
Koltes, J. E. [4 ]
Santos, J. E. P. [5 ]
Baldwin, R. L. [6 ]
Burchard, J. F. [2 ]
Durr, J. W. [2 ]
Tempelman, R. J. [1 ]
机构
[1] Michigan State Univ, Dept Anim Sci, E Lansing, MI 48824 USA
[2] Council Dairy Cattle Breeding, Bowie, MD 20716 USA
[3] Univ Wisconsin, Dept Anim & Dairy Sci, Madison, WI 53706 USA
[4] Iowa State Univ, Dept Anim Sci, Ames 50011, Spain
[5] Univ Florida, Dept Anim Sci, Gainesville, FL 32608 USA
[6] Agr Res Serv, Anim Genom & Improvement Lab, USDA, Beltsville, MD 20705 USA
基金
美国食品与农业研究所;
关键词
residual feed intake; feed saved; multiple trait; random regression; NONGENETIC VARIATION; GENETIC-PARAMETERS; SELECTION;
D O I
10.3168/jds.2021-21739
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Residual feed intake (RFI) and feed saved (FS) are important feed efficiency traits that have been increasingly considered in genetic improvement programs. Future sustainability of these genetic evaluations will depend upon greater flexibility to accommodate sparsely recorded dry matter intake (DMI) records on many more cows, especially from commercial environments. Recent multiple-trait random regression (MTRR) modeling developments have facilitated days in milk (DIM)-specific inferences on RFI and FS, particularly in modeling the effect of change in metabolic body weight (MBW). The MTRR analyses, using daily data on the core traits of DMI, MBW, and milk energy (MilkE), were conducted separately for 2,532 primiparous and 2,379 multiparous US Holstein cows from 50 to 200 DIM. Estimated MTRR variance components were used to derive genetic RFI and FS and DIM-specific genetic partial regressions of DMI on MBW, MilkE, and change in MBW. Estimated daily heritabilities of RFI and FS varied across lactation for both primiparous (0.05-0.07 and 0.11-0.17, respectively) and multiparous (0.03-0.13 and 0.10-0.17, respectively) cows. Genetic correlations of RFI across DIM varied (> 0.05) widely compared with FS (> 0.54) within either parity class. Heritability estimates based on average lactation-wise measures were substantially larger than daily heritabilities, ranging from 0.17 to 0.25 for RFI and from 0.35 to 0.41 for FS. The partial genetic regression coefficients of DMI on MBW (0.11 to 0.16 kg/kg(0.75) for primiparous and 0.12 to 0.14 kg/kg(0.75) for multiparous cows) and of DMI on MilkE (0.45 to 0.68 kg/Mcal for primiparous and 0.36 to 0.61 kg/Mcal for multiparous cows) also varied across lactation. In spite of the computational challenges encountered with MTRR, the model potentially facilitates an efficient strategy for harnessing more data involving a wide variety of data recording scenarios for genetic evaluations on feed efficiency.
引用
收藏
页码:5954 / 5971
页数:18
相关论文
共 21 条
[1]   Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information [J].
Forni, Selma ;
Aguilar, Ignacio ;
Misztal, Ignacy .
GENETICS SELECTION EVOLUTION, 2011, 43
[2]  
Gaddis K. L. Parker, 2021, Interbull Bulletin, P147
[3]   Bayesian estimation of genetic variance and response to selection on linear or ratio traits of feed efficiency in dairy cattle [J].
Islam, M. S. ;
Jensen, J. ;
Lovendahl, P. ;
Karlskov-Mortensen, P. ;
Shirali, M. .
JOURNAL OF DAIRY SCIENCE, 2020, 103 (10) :9150-9166
[4]   WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). [J].
Meyer K. .
Journal of Zhejiang University SCIENCE B, 2007, 8 (11) :815-821
[5]   Genetic heterogeneity of feed intake, energy-corrected milk, and body weight across lactation in primiparous Holstein, Nordic Red, and Jersey cows [J].
Li, B. ;
Fikse, W. F. ;
Lovendahl, P. ;
Lassen, J. ;
Lidauer, M. H. ;
Mantysaari, P. ;
Berglund, B. .
JOURNAL OF DAIRY SCIENCE, 2018, 101 (11) :10011-10021
[6]   Neglect of lactation stage leads to naive assessment of residual feed intake in dairy cattle [J].
Li, B. ;
Berglund, B. ;
Fikse, W. F. ;
Lassen, J. ;
Lidauer, M. H. ;
Mantysaari, P. ;
Lovendahl, P. .
JOURNAL OF DAIRY SCIENCE, 2017, 100 (11) :9076-9084
[7]   Genetic parameters for residual energy intake and energy conversion efficiency in Nordic Red dairy cattle [J].
Liinamo, A. -E. ;
Mantysaari, P. ;
Lidauer, M. H. ;
Mantysaari, E. A. .
ACTA AGRICULTURAE SCANDINAVICA SECTION A-ANIMAL SCIENCE, 2015, 65 (02) :63-72
[8]   Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency [J].
Lu, Y. ;
Vandehaar, M. J. ;
Spurlock, D. M. ;
Weigel, K. A. ;
Armentano, L. E. ;
Connor, E. E. ;
Coffey, M. ;
Veerkamp, R. F. ;
de Haas, Y. ;
Staples, C. R. ;
Wang, Z. ;
Hanigan, M. D. ;
Tempelman, R. J. .
JOURNAL OF DAIRY SCIENCE, 2018, 101 (04) :3140-3154
[9]   Modeling genetic and nongenetic variation of feed efficiency and its partial relationships between component traits as a function of management and environmental factors [J].
Lu, Y. ;
Vandehaar, M. J. ;
Spurlock, D. M. ;
Weigel, K. A. ;
Armentano, L. E. ;
Staples, C. R. ;
Connor, E. E. ;
Wang, Z. ;
Coffey, M. ;
Veerkamp, R. F. ;
de Haas, Y. ;
Tempelman, R. J. .
JOURNAL OF DAIRY SCIENCE, 2017, 100 (01) :412-427
[10]   An alternative approach to modeling genetic merit of feed efficiency in dairy cattle [J].
Lu, Y. ;
Vandehaar, M. J. ;
Spurlock, D. M. ;
Weigel, K. A. ;
Armentano, L. E. ;
Staples, C. R. ;
Connor, E. E. ;
Wang, Z. ;
Bello, N. M. ;
Tempelman, R. J. .
JOURNAL OF DAIRY SCIENCE, 2015, 98 (09) :6535-6551