2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY

被引:3
作者
Fu, Hang [1 ,2 ]
Sun, Genyun [1 ,2 ]
Ren, Jinchang [3 ]
Zabalza, Jamie [3 ]
Zhang, Aizhu [1 ,2 ]
Yao, Yanjuan [4 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Shandong, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
[3] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[4] Minist Environm Protect China, Satellite Environm Ctr, Beijing 100094, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
中国国家自然科学基金;
关键词
segmented principal component analysis (SPCA); hyperspectral imagery (HSI); Multiscale; 2D-SSA; feature extraction; data classification;
D O I
10.1109/IGARSS39084.2020.9323776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Singular spectrum analysis (SSA) and its 2-D variation (2D-SSA) have been successfully applied for effective feature extraction in hyperspectral imaging (HSI). However, they both cannot effectively use the spectral-spatial information, leading to a limited accuracy in classification. To tackle this problem, a novel 2D-SSA based multiscale feature fusion method, combining with segmented principal component analysis (SPCA), is proposed in this paper. The SPCA method is used for dimension reduction and spectral feature extraction, while multiscale 2D-SSA can extract abundant spatial features at different scales. In addition, a postprocessing via SPCA is applied on fused features to enhance the spectral discriminability. Experiments on two widely used datasets show that the proposed method outperforms two conventional SSA methods and other spectral-spatial classification methods in terms of the classification accuracy and computational cost.
引用
收藏
页码:76 / 79
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[2]   Feature selection and classification of hyperspectral images, with support vector machines [J].
Archibald, Rick ;
Fann, George .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :674-677
[3]   Feature Mining for Hyperspectral Image Classification [J].
Jia, Xiuping ;
Kuo, Bor-Chen ;
Crawford, Melba M. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :676-697
[4]   Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification [J].
Jia, XP ;
Richards, JA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01) :538-542
[5]   PCA-Based Edge-Preserving Features for Hyperspectral Image Classification [J].
Kang, Xudong ;
Xiang, Xuanlin ;
Li, Shutao ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12) :7140-7151
[6]   Intrinsic Image Decomposition for Feature Extraction of Hyperspectral Images [J].
Kang, Xudong ;
Li, Shutao ;
Fang, Leyuan ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :2241-2253
[7]   Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks [J].
Mei, Shaohui ;
Ji, Jingyu ;
Hou, Junhui ;
Li, Xu ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4520-4533
[8]   Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification [J].
Wang, Lizhe ;
Zhang, Jiabin ;
Liu, Peng ;
Choo, Kim-Kwang Raymond ;
Huang, Fang .
SOFT COMPUTING, 2017, 21 (01) :213-221
[9]   Novel Two-Dimensional Singular Spectrum Analysis for Effective Feature Extraction and Data Classification in Hyperspectral Imaging [J].
Zabalza, Jaime ;
Ren, Jinchang ;
Zheng, Jiangbin ;
Han, Junwei ;
Zhao, Huimin ;
Li, Shutao ;
Marshall, Stephen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08) :4418-4433
[10]   Singular Spectrum Analysis for Effective Feature Extraction in Hyperspectral Imaging [J].
Zabalza, Jaime ;
Ren, Jinchang ;
Wang, Zheng ;
Marshall, Stephen ;
Wang, Jun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) :1886-1890