Infinite groups with Sylow permutable subgroups

被引:7
作者
Ballester-Bolinches, Adolfo [2 ]
Kurdachenko, Leonid A. [3 ]
Otal, Javier [1 ]
Pedraza, Tatiana [4 ]
机构
[1] Univ Zaragoza, IUMA, Dept Matemat, E-50009 Zaragoza, Spain
[2] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
[3] Natl Univ Dnepropetrovsk, Dept Algebra, UA-49010 Dnepropetrovsk 10, Ukraine
[4] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
Hyperfinite group; Radical group; S-permutability; Ascendant subgroup; Subnormal subgroup; FINITE-GROUPS;
D O I
10.1007/s10231-009-0123-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a subgroup H of a periodic group G satisfies HP = PH for all Sylow subgroups P of G, then we call H a Sylow-permutable, or S-permutable, subgroup of G. It is well known that S-permutability is not a transitive relation. In this paper, we study infinite periodic groups in which the relation to be S-permutable is transitive (PST-groups) and infinite periodic groups whose ascendant subgroups are S-permutable (ASP-groups).
引用
收藏
页码:553 / 565
页数:13
相关论文
共 12 条
[1]   FINITE-GROUPS WHOSE SUBNORMAL SUBGROUPS PERMUTE WITH ALL SYLOW SUBGROUPS [J].
AGRAWAL, RK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (01) :77-83
[2]   Infinite groups with many permutable subgroups [J].
Ballester-Bolinches, A. ;
Kurdachenko, L. A. ;
Otal, J. ;
Pedraza, T. .
REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) :745-764
[3]   Local characterizations of infinite groups whose ascendant subgroups are permutable [J].
Ballester-Bolinches, Adolfo ;
Kurdachenko, Leonid A. ;
Otal, Javier ;
Pedraza, Tatiana .
FORUM MATHEMATICUM, 2010, 22 (01) :187-201
[4]  
Chernikov S. N, 1940, MAT SBORNIK, V7, P35
[5]  
Dixon M. R., 1994, Sylow Theory, Formations and Fitting Classes in Locally Finite Groups
[6]  
HARTLEY B, 1971, P LOND MATH SOC, V23, P159
[7]  
Huppert B., 1961, ARCH MATH, V12, P161
[8]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169
[9]  
Kurosh A.G., 1967, THE THEORY OF GROUPS
[10]   GROUPS IN WHICH NORMALITY IS TRANSITIVE RELATION [J].
ROBINSON, DJ .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (01) :21-&