Quantum Models a la Gabor for the Space-Time Metric

被引:0
作者
Cohen-Tannoudji, Gilles [1 ]
Gazeau, Jean-Pierre [2 ]
Habonimana, Celestin [3 ]
Shabani, Juma [4 ]
机构
[1] Univ Paris Saclay, LARSIM CEA, Lab Rech Sci Matiere, F-91190 St Aubin, France
[2] Univ Paris Cite, CNRS, Astroparticule & Cosmol, F-75013 Paris, France
[3] Univ Burundi, Ecole Normale Super, Bujumbura 1550, Burundi
[4] Univ Burundi, Ecole Doctorale, Bujumbura 1550, Burundi
关键词
covariant Weyl-Heisenberg integral quantization; time-frequency; position-wave vector; space-time metric; general relativity; geometry of information; CONTINUOUS-REPRESENTATION THEORY; MECHANICAL SYSTEMS; GIBBS-STATES; QUANTIZATION;
D O I
10.3390/e24060835
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space x,k into Hilbertian operators. The x=x mu values are space-time variables, and the k=k mu values are their conjugate frequency-wave vector variables. The procedure is first applied to the variables x,k and produces essentially canonically conjugate self-adjoint operators. It is next applied to the metric field g mu nu(x) of general relativity and yields regularized semi-classical phase space portraits g7;mu nu(x). The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed.
引用
收藏
页数:20
相关论文
共 39 条
[1]  
Akhiezer N.J., 1981, THEORY LINEAR OPERAT, VI and II
[2]  
[Anonymous], 1972, Functional Analysis
[3]   Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics [J].
Barbaresco, Frederic ;
Gay-Balmaz, Francois .
ENTROPY, 2020, 22 (05)
[4]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[5]   Integral quantizations with two basic examples [J].
Bergeron, H. ;
Gazeau, J. P. .
ANNALS OF PHYSICS, 2014, 344 :43-68
[6]  
Bergeron H, IN PRESS, P2022
[7]   Quantum Mixmaster as a Model of the Primordial Universe [J].
Bergeron, Herve ;
Czuchry, Ewa ;
Gazeau, Jean Pierre ;
Malkiewicz, Przemyslaw .
UNIVERSE, 2020, 6 (01)
[8]  
Busch P, 2016, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-319-43389-9
[9]  
Cohen-Tannoudji Gilles, 2019, Annales de la Fondation Louis de Broglie, V44, P187
[10]   Lambda, the fifth foundational constant considered by Einstein [J].
Cohen-Tannoudji, Gilles .
METROLOGIA, 2018, 55 (04) :486-498