Spatially selective remote magnetic actuation of identical helical micromachines

被引:116
作者
Rahmer, Juergen [1 ]
Stehning, Christian [2 ]
Gleich, Bernhard [1 ]
机构
[1] Philips GmbH Innovat Technol, Res Labs, Rontgenstr 24-26, D-22335 Hamburg, Germany
[2] Philips GmbH Market DACH, Rontgenstr 22, D-22335 Hamburg, Germany
关键词
MICROROBOTS; SYSTEMS;
D O I
10.1126/scirobotics.aal2845
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Magnetic micromachines can be controlled remotely inside the human body by application of external magnetic fields, making them promising candidates for minimally invasive local therapy delivery. For many therapeutic scenarios, a large team of micromachines is required, but a convincing approach for controlling individual team members is currently missing. We present a method for selective control of identical helical micromachines based on their spatial position. The micromachines are operated by uniform rotating fields, whereas spatial selection is achieved by application of a strong field gradient that locks all machines except those located inside a small movable volume. We deliver experimental evidence of three-dimensional selective actuation with a spatial selectivity on the order of millimeters over a workspace large enough for clinical applications. Selective control of teams of helical micromachines may improve minimally invasive therapeutic approaches and may lead to more flexible local drug delivery systems or adaptive medical implants. As an example, we propose a concept for adaptive radiation treatment in cancer therapy based on selective switching of radioactive sources distributed inside a tumor.
引用
收藏
页数:9
相关论文
共 36 条
[11]  
Diller Eric., 2011, FDN AND TRENDS IN RO, V2, P143, DOI DOI 10.1561/2300000023
[12]   Microscopic artificial swimmers [J].
Dreyfus, R ;
Baudry, J ;
Roper, ML ;
Fermigier, M ;
Stone, HA ;
Bibette, J .
NATURE, 2005, 437 (7060) :862-865
[13]   Initial experience with remote catheter ablation using a novel magnetic navigation system -: Magnetic remote catheter ablation [J].
Ernst, S ;
Ouyang, FF ;
Linder, C ;
Hertting, K ;
Stahl, F ;
Chun, J ;
Hachiya, H ;
Bänsch, D ;
Antz, M ;
Kuck, KH .
CIRCULATION, 2004, 109 (12) :1472-1475
[14]   Cargo-Towing Fuel-Free Magnetic Nanoswimmers for Targeted Drug Delivery [J].
Gao, Wei ;
Kagan, Daniel ;
Pak, On Shun ;
Clawson, Corbin ;
Campuzano, Susana ;
Chuluun-Erdene, Erdembileg ;
Shipton, Erik ;
Fullerton, Eric E. ;
Zhang, Liangfang ;
Lauga, Eric ;
Wang, Joseph .
SMALL, 2012, 8 (03) :460-467
[15]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[16]   Magnetic Particle Imaging: A Resovist Based Marking Technology for Guide Wires and Catheters for Vascular Interventions [J].
Haegele, Julian ;
Panagiotopoulos, Nikolaos ;
Cremers, Sjef ;
Rahmer, Juergen ;
Franke, Jochen ;
Duschka, Robert L. ;
Vaalma, Sarah ;
Heidenreich, Michael ;
Borgert, Joern ;
Borm, Paul ;
Barkhausen, Joerg ;
Vogt, Florian M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (10) :2312-2318
[17]   Multi-color magnetic particle imaging for cardiovascular interventions [J].
Haegele, Julian ;
Vaalma, Sarah ;
Panagiotopoulos, Nikolaos ;
Barkhausen, Joerg ;
Vogt, Florian M. ;
Borgert, Joern ;
Rahmer, Juergen .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (16) :N415-N426
[18]  
Halperin E. C., 2013, PEREZ BRADYS PRINCIP
[19]  
Hass Peter, 2014, Viszeralmedizin, V30, P245, DOI 10.1159/000366088
[20]   Theory of Gradient Coil Design Methods for Magnetic Resonance Imaging [J].
Hidalgo-Tobon, S. S. .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2010, 36A (04) :223-242