Pointwise convergence of ergodic averages for polynomial actions of Ζd by translations on a nilmanifold

被引:32
作者
Leibman, A [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43221 USA
关键词
D O I
10.1017/S0143385704000227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing the one-parameter case, we prove that the orbit of a point on a compact nilmanifold X under a polynomial action of Z(d) by translations on X is uniformly distributed on the union of several sub-nilmanifolds of X. As a corollary we obtain the pointwise ergodic theorem for polynomial actions of Z(d) by translations on a nilmanifold.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 5 条
[1]  
Furstenberg H, 1981, Recurrence in ergodic theory and combinatorial number theory
[2]  
LEIBMAN A, IN PRESS ERGOD TH DY
[3]  
Maltsev A. I., 1949, Izv. Akad. Nauk SSSR Ser. Mat., V13, P9
[4]  
Shah N. A., 1998, TATA I FUND RES STUD, P229
[5]   LIMIT DISTRIBUTIONS OF POLYNOMIAL TRAJECTORIES ON HOMOGENEOUS SPACES [J].
SHAH, NA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (03) :711-732