Strongly regular graphs with parameters (4m4, 2m4 + m2, m4 + m2, m4 + m2) exist for all m > 1

被引:12
作者
Haemers, Willem H. [1 ]
Xiang, Qing [2 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
DIFFERENCE SETS; WILLIAMSON MATRICES;
D O I
10.1016/j.ejc.2009.07.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using results on Hadamard difference sets, we construct regular graphical Hadamard matrices of negative type of order 4m(4) for every positive integer m. If m > 1, such a Hadamard matrix is equivalent to a strongly regular graph with parameters (4m(4), 2m(4) + m(2), m(4) + m(2), m(4) + m(2)). Strongly regular graphs with these parameters have been called max energy graphs, because they have maximal energy (as defined by Gutman) among all graphs on 4m(4) vertices. For odd m >= 3 the strongly regular graphs seem to be new. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1553 / 1559
页数:7
相关论文
共 13 条
[1]  
Chen Y.Q., 1997, Finite Fields Their Appl., V3, P234, DOI [DOI 10.1006/FFTA.1997.0184, 10.1006/FFTA.1997.0184]
[2]   A unifying construction for difference sets [J].
Davis, JA ;
Jedwab, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (01) :13-78
[3]   STRONGLY REGULAR GRAPHS DERIVED FROM COMBINATORIAL DESIGNS [J].
GOETHALS, JM .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (03) :597-&
[4]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196
[5]   Strongly regular graphs with maximal energy [J].
Haemers, Willem H. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) :2719-2723
[6]  
IONIN Y. J., 2006, Combinatorics of Symmetric Designs
[7]   Maximal energy graphs [J].
Koolen, JH ;
Moulton, V .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (01) :47-52
[8]   Symmetric bush-type Hadamard matrices of order 4m4 exist for all odd m [J].
Muzychuk, M ;
Xiang, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) :2197-2204
[9]  
STEVANOVIC D, 2006, ARCC WORKSH SPECTR F
[10]   A SPECIAL-CLASS OF WILLIAMSON MATRICES AND DIFFERENCE SETS [J].
TURYN, RJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 36 (01) :111-115