LANMC: LSTM-Assisted Non-Rigid Motion Correction on FPGA for Calcium Image Stabilization

被引:11
作者
Chen, Zhe [1 ]
Blair, Hugh T. [1 ]
Cong, Jason [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
来源
PROCEEDINGS OF THE 2019 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'19) | 2019年
关键词
Calcium image; long short-term memory (LSTM); motion correction;
D O I
10.1145/3289602.3293919
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Calcium imaging is an emerging technique for visualizing and recording neural population activity at large scale in vivo. Non-rigid motion correction is a critical step in the calcium image analysis pipeline due to non-uniform deformations of the brain tissue during the data collection. Existing non-rigid motion correction algorithms are costly in computation time and energy, and it is hard to implement such algorithm in real time on an embedded device. In this paper, we propose LANMC, an LSTM-assisted non-rigid motion correction method for real-time calcium image stabilization. This method reduces the computational cost by using the LSTM inference to predict the non-rigid motion. Based on this method, we demonstrate a non-rigid motion correction implementation for real-time calcium image stabilization on FPGA. Experimental results show that the non-rigid motion correction can be accomplished within 80 mu s on the Ultra96 under 300 MHz frequency, and the latency outperforms that on a 12-thread CPU by 82x.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 15 条
[1]   A shared neural ensemble links distinct contextual memories encoded close in time [J].
Cai, Denise J. ;
Aharoni, Daniel ;
Shuman, Tristan ;
Shobe, Justin ;
Biane, Jeremy ;
Song, Weilin ;
Wei, Brandon ;
Veshkini, Michael ;
La-Vu, Mimi ;
Lou, Jerry ;
Flores, Sergio E. ;
Kim, Isaac ;
Sano, Yoshitake ;
Zhou, Miou ;
Baumgaertel, Karsten ;
Lavi, Ayal ;
Kamata, Masakazu ;
Tuszynski, Mark ;
Mayford, Mark ;
Golshani, Peyman ;
Silva, Alcino J. .
NATURE, 2016, 534 (7605) :115-+
[2]  
Chandrapala T. N., 2012, 2012 22nd International Conference on Field Programmable Logic and Applications (FPL), P243, DOI 10.1109/FPL.2012.6339188
[3]  
Chen Zhe, 2018, P INT S LOW POW EL D, P2
[4]   Two-frame motion estimation based on polynomial expansion [J].
Farnebäck, G .
IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 :363-370
[5]  
Ghosh KK, 2011, NAT METHODS, V8, P871, DOI [10.1038/NMETH.1694, 10.1038/nmeth.1694]
[6]  
Giovannucci A., 2017, P 31 INT C NEURAL IN, P2378
[7]  
Gonzalez D., 2011, 2011 International Conference on Field Programmable Logic and Applications, P389, DOI 10.1109/FPL.2011.76
[8]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[9]   AxTrain: Hardware-Oriented Neural Network Training for Approximate Inference [J].
He, Xin ;
Ke, Liu ;
Lu, Wenyan ;
Yan, Guihai ;
Zhang, Xuan .
PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED '18), 2018, :110-115
[10]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678