Invisible Thin-Film Patterns with Strong Infrared Emission as an Optical Security Feature

被引:35
作者
Bakan, Gokhan [1 ,2 ]
Ayas, Sencer [1 ,3 ]
Serhatlioglu, Murat [1 ]
Elbuken, Caglar [1 ]
Dana, Aykutlu [1 ,4 ]
机构
[1] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkey
[2] Atilim Univ, Dept Elect & Elect Engn, TR-06830 Ankara, Turkey
[3] Stanford Sch Med, Dept Radiol, Canary Ctr Stanford Canc Early Detect, Palo Alto, CA 94304 USA
[4] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
关键词
enhanced infrared absorption; optical security; Salisbury screen; thermal emission; thermal emitters; THERMAL EMISSION; BROAD-BAND; ABSORPTION; RADIATION; NANOANTENNAS;
D O I
10.1002/adom.201800613
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spectrally selective thermal emission is in high demand for thermophotovoltaics, radiative cooling, and infrared sensing applications. Spectral control of the emissivity is historically achieved by choosing the material with suitable infrared properties. The recent advancements in nanofabrication techniques that lead to enhanced light-matter interactions enable optical properties like infrared emissivity that are not naturally available. In this study, thermal emitters based on nanometer-thick dielectrics on field-enhancement surfaces as optical security features are proposed. Such a function is achieved by generating patterns by ultrathin dielectrics that are transparent in the visible and exhibit strong infrared absorption in the spectral range of thermal cameras. The invisible patterns are then revealed by thermal imaging. The field-enhancement surfaces enhance the emissivity of the patterns, in turn reduce the minimum temperature to detect the thermal emission down to approximate to 30 degrees C from >150 degrees C to exploit ubiquitous heat sources like the human body. The study provides a framework for the use of thermal emitters as optical security features and demonstrates applications on rigid and flexible substrates.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification [J].
Arpin, Kevin A. ;
Losego, Mark D. ;
Cloud, Andrew N. ;
Ning, Hailong ;
Mallek, Justin ;
Sergeant, Nicholas P. ;
Zhu, Linxiao ;
Yu, Zongfu ;
Kalanyan, Berc ;
Parsons, Gregory N. ;
Girolami, Gregory S. ;
Abelson, John R. ;
Fan, Shanhui ;
Braun, Paul V. .
NATURE COMMUNICATIONS, 2013, 4
[2]   Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor [J].
Asano, Takashi ;
Suemitsu, Masahiro ;
Hashimoto, Kohei ;
De Zoysa, Menaka ;
Shibahara, Tatsuya ;
Tsutsumi, Tatsunori ;
Noda, Susumu .
SCIENCE ADVANCES, 2016, 2 (12)
[3]   Universal Infrared Absorption Spectroscopy Using Uniform Electromagnetic Enhancement [J].
Ayas, Sencer ;
Bakan, Gokhan ;
Ozgur, Erol ;
Celebi, Kemal ;
Dana, Aykudu .
ACS PHOTONICS, 2016, 3 (03) :337-342
[4]   Thermally Tunable Ultrasensitive Infrared Absorption Spectroscopy Platforms Based on Thin Phase-Change Films [J].
Bakan, Gokhan ;
Ayas, Sencer ;
Ozgur, Erol ;
Celebi, Kemal ;
Dana, Aykutlu .
ACS SENSORS, 2016, 1 (12) :1403-1407
[5]   Electronic modulation of infrared radiation in graphene plasmonic resonators [J].
Brar, Victor W. ;
Sherrott, Michelle C. ;
Jang, Min Seok ;
Kim, Seyoon ;
Kim, Laura ;
Choi, Mansoo ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle [J].
Chen, Zhen ;
Zhu, Linxiao ;
Raman, Aaswath ;
Fan, Shanhui .
NATURE COMMUNICATIONS, 2016, 7
[7]   Probing the Ultimate Limits of Plasmonic Enhancement [J].
Ciraci, C. ;
Hill, R. T. ;
Mock, J. J. ;
Urzhumov, Y. ;
Fernandez-Dominguez, A. I. ;
Maier, S. A. ;
Pendry, J. B. ;
Chilkoti, A. ;
Smith, D. R. .
SCIENCE, 2012, 337 (6098) :1072-1074
[8]   Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications [J].
Cui, Yan ;
Hegde, Ravi S. ;
Phang, In Yee ;
Lee, Hiang Kwee ;
Ling, Xing Yi .
NANOSCALE, 2014, 6 (01) :282-288
[9]   Encoding Random Hot Spots of a Volume Gold Nanorod Assembly for Ultralow Energy Memory [J].
Dai, Qiaofeng ;
Ouyang, Min ;
Yuan, Weiguang ;
Li, Jinxiang ;
Guo, Banghong ;
Lan, Sheng ;
Liu, Songhao ;
Zhang, Qiming ;
Lu, Guang ;
Tie, Shaolong ;
Deng, Haidong ;
Xu, Yi ;
Gu, Min .
ADVANCED MATERIALS, 2017, 29 (35)
[10]   Conversion of broadband to narrowband thermal emission through energy recycling [J].
De Zoysa, Menaka ;
Asano, Takashi ;
Mochizuki, Keita ;
Oskooi, Ardavan ;
Inoue, Takuya ;
Noda, Susumu .
NATURE PHOTONICS, 2012, 6 (08) :535-539