Transport phenomena in direct borohydride fuel cells

被引:39
作者
An, L. [1 ]
Jung, C. Y. [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[2] Korea Inst Energy Res, Hydrogen & Fuel Cell Ctr, New & Renewable Energy Res Div, Daejeon, South Korea
关键词
Fuel cells; Direct borohydride fuel cells; Membrane electrode assembly; Transport phenomena; Two-phase flow; HYDROGEL ELECTRODE BINDER; HIGH-PERFORMANCE; SODIUM-BOROHYDRIDE; OPERATION CONDITIONS; HOLLOW NANOSPHERES; EXCHANGE MEMBRANES; ANODE CATALYSTS; PRUSSIAN-BLUE; PEROXIDE; OXIDATION;
D O I
10.1016/j.apenergy.2017.08.116
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Direct borohydride fuel cells, which convert the chemical energy stored in borohydride directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and Stationary power applications, primarily because they run on a carbon-free fuel and uses the low-cost materials. For this reason, this energy technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in direct borohydride fuel cells. Particular attention is paid to the understanding of the critical issues related to transportation of various species through the fuel cell structure.
引用
收藏
页码:1270 / 1282
页数:13
相关论文
共 124 条
[1]   A novel high power density borohydride-air cell [J].
Amendola, SC ;
Onnerud, P ;
Kelly, MT ;
Petillo, PJ ;
Sharp-Goldman, SL ;
Binder, M .
JOURNAL OF POWER SOURCES, 1999, 84 (01) :130-133
[2]   Mathematical modeling of direct formate fuel cells [J].
An, L. ;
Chen, R. .
APPLIED THERMAL ENGINEERING, 2017, 124 :232-240
[3]   Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production [J].
An, L. ;
Zhao, T. S. .
JOURNAL OF POWER SOURCES, 2017, 341 :199-211
[4]   Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production [J].
An, L. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2016, 329 :484-501
[5]   Direct formate fuel cells: A review [J].
An, L. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2016, 320 :127-139
[6]   Carbon-neutral sustainable energy technology: Direct ethanol fuel cells [J].
An, L. ;
Zhao, T. S. ;
Li, Y. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 :1462-1468
[7]   Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production [J].
An, L. ;
Zhao, T. S. ;
Chai, Z. H. ;
Tan, P. ;
Zeng, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) :19869-19876
[8]   A low-cost, high-performance zinc-hydrogen peroxide fuel cell [J].
An, L. ;
Zhao, T. S. ;
Zhou, X. L. ;
Yan, X. H. ;
Jung, C. Y. .
JOURNAL OF POWER SOURCES, 2015, 275 :831-834
[9]   A high-performance ethanol-hydrogen peroxide fuel cell [J].
An, L. ;
Zhao, T. S. ;
Zhou, X. L. ;
Wei, L. ;
Yan, X. H. .
RSC ADVANCES, 2014, 4 (110) :65031-65034
[10]   Modeling of the mixed potential in hydrogen peroxide-based fuel cells [J].
An, L. ;
Zhao, T. S. ;
Chai, Z. H. ;
Zeng, L. ;
Tan, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (14) :7407-7416