Wave propagation of the perturbed nonlinear Schrodingers equation in the nonlinear left-handed transmission lines

被引:1
作者
Houwe, Alphonse [1 ,2 ]
Justin, Mibaile [3 ]
Dikwa, Jerome [4 ]
Gambo, Betchewe [2 ]
Doka, Serge Y. [5 ]
Crepin, Kofane Timoleon [6 ]
机构
[1] Limbe Naut Arts & Fisheries Inst, Dept Marine Engn, POB 485, Limbe, Cameroon
[2] Univ Maroua, Dept Phys, Fac Sci, POB 814, Maroua, Cameroon
[3] Univ Maroua, Higher Teachers Training Coll Maroua, POB 55, Maroua, Cameroon
[4] Univ Ngaoundere, Inst Univ Technol, POB 454, Ngaoundere, Cameroon
[5] Univ Ngaoundere, Dept Phys, Fac Sci, POB 454, Ngaoundere, Cameroon
[6] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
关键词
Soliton; integrability; composite right/left-handed transmission lines; SOLITONS;
D O I
10.1142/S1793557120500357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper secures chirped dark and bright solitons of the perturbed nonlinear Schrodinger equation with parabolic law nonlinearity and self-steepening effect in the nonlinear left-handed metamaterials (NLHMs). We use the ansatz method, sine-cosine, csch function method and the auxiliary equation method to fall out the various soliton solutions. In view of the results obtained, rational, hyperbolic and trigonometric solutions emerge and there are new in CRLH TL. The existence criteria of these solutions are also discussed. Finally, we observed that the use of the auxiliary equation method leads to the abundant and efficient solutions than the other methods.
引用
收藏
页数:14
相关论文
共 22 条
[1]  
Abdoulkary S., 2014, COMMUN NONLINEAR SCI
[2]   Soliton solution for nonlinear partial differential equations by cosine-function method [J].
Ali, A. H. A. ;
Soliman, A. A. ;
Raslan, K. R. .
PHYSICS LETTERS A, 2007, 368 (3-4) :299-304
[3]   Chirped solitons in optical metamaterials with parabolic law nonlinearity by extended trial function method [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 160 :92-99
[4]   Optical soliton perturbation with Gerdjikov-Ivanov equation by modified simple equation method [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Triki, Houria ;
Alshomrani, Ali Saleh ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 157 :1235-1240
[5]  
ELEFTHERIADES GI, 2005, FUNDAMENTAL PRINCIPL
[6]  
Gupta S, 2007, IEEE MTT S INT MICR, P978
[7]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[8]   Chirped solitons in derivative nonlinear Schrodinger equation [J].
Justin, Mibaile ;
Hubert, Malwe Boudoue ;
Betchewe, Gambo ;
Doka, Serge Yamigno ;
Crepin, Kofane Timoleon .
CHAOS SOLITONS & FRACTALS, 2018, 107 :49-54
[9]   Trains of envelope solitons in nonlinear left-handed transmission line media [J].
Kozyrev, Alexander B. ;
Van der Weide, Daniel W. .
APPLIED PHYSICS LETTERS, 2007, 91 (25)
[10]   Negative refraction at visible frequencies [J].
Lezec, Henri J. ;
Dionne, Jennifer A. ;
Atwater, Harry A. .
SCIENCE, 2007, 316 (5823) :430-432