Multiple Solutions for a Class of Neumann Elliptic Problems on Compact Riemannian Manifolds with Boundary

被引:6
作者
Kristaly, Alexandru [1 ]
Papageorgiou, Nikolaos S. [2 ]
Varga, Csaba [3 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[3] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2010年 / 53卷 / 04期
关键词
Riemannian manifold with boundary; Neumann problem; sublinearity at infinity; multiple solutions; MEAN-CURVATURE;
D O I
10.4153/CMB-2010-073-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the non-linear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.
引用
收藏
页码:674 / 683
页数:10
相关论文
共 8 条
[1]  
[Anonymous], 2004, J NONLINEAR CONVEX A
[2]  
CARSLAW HS, 1959, CONDUCTION HEAT SOLI, P17
[3]  
Diaz J. I., 1985, RES NOTES MATH, V106
[4]  
ESCOBAR JF, 1992, J DIFFER GEOM, V35, P21
[6]   Conformal metrics with prescribed mean curvature on the boundary [J].
Escobar, JF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (06) :559-592
[8]   A three critical points theorem revisited [J].
Ricceri, Biagio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3084-3089