The Rieger periods are solar cycles with a time scale of months, which are present in both flaring activity and sunspot occurrence. These short-term periodicities, tentatively explained by equatorially trapped Rossby-type waves modulating the emergence of magnetic flux at the surface, are considered a peculiar and not yet fully understood solar phenomenon. We chose a stellar system with solar characteristics, UX Arietis, and performed a timing analysis of two 9-year datasets of radio and optical observations. The analysis reveals a 294-day cycle. When the two 9-year datasets are folded with this period, a synchronization of the peak of the optical light curve ( i.e., the minimum spot coverage) with the minimum radio flaring activity is observed. This close relationship between two completly independent curves makes it very likely that the 294-day cycle is real. We conclude that the process invoked for the Sun of a periodical emergence of magnetic flux may also be applied to UX Arietis and can explain the cyclic flaring activity triggered by interactions between successive cyclic emergences of magnetic flux.