Improved Placement of Multi-mapping Small RNAs

被引:192
作者
Johnson, Nathan R. [1 ,2 ]
Yeoh, Jonathan M. [2 ]
Coruh, Ceyda [1 ,3 ,4 ]
Axtell, Michael J. [1 ,3 ]
机构
[1] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[3] Knox Coll, Dept Biol, Galesburg, IL 61401 USA
[4] Salk Inst Biol Studies, La Jolla, CA 92037 USA
基金
美国国家科学基金会;
关键词
alignment; annotation; sRNA-seq; siRNA; miRNA; bioinformatics; DIRECTED DNA METHYLATION; ALIGNMENT; TRANSCRIPTOMES; BIOGENESIS; MICRORNA; PATHWAY; SCALE;
D O I
10.1534/g3.116.030452
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
High-throughput sequencing of small RNAs (sRNA-seq) is a popular method used to discover and annotate microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs), and Piwi-associated RNAs (piRNAs). One of the key steps in sRNA-seq data analysis is alignment to a reference genome. sRNA-seq libraries often have a high proportion of reads that align to multiple genomic locations, which makes determining their true origins difficult. Commonly used sRNA-seq alignment methods result in either very low precision (choosing an alignment at random), or sensitivity (ignoring multi-mapping reads). Here, we describe and test an sRNA-seq alignment strategy that uses local genomic context to guide decisions on proper placements of multi-mapped sRNA-seq reads. Tests using simulated sRNA-seq data demonstrated that this local-weighting method outperforms other alignment strategies using three different plant genomes. Experimental analyses with real sRNA-seq data also indicate superior performance of local-weighting methods for both plant miRNAs and heterochromatic siRNAs. The local-weighting methods we have developed are implemented as part of the sRNA-seq analysis program ShortStack, which is freely available under a general public license. Improved genome alignments of sRNA-seq data should increase the quality of downstream analyses and genome annotation efforts.
引用
收藏
页码:2103 / 2111
页数:9
相关论文
共 27 条
[1]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[2]   A novel class of small RNAs bind to MILI protein in mouse testes [J].
Aravin, Alexei ;
Gaidatzis, Dimos ;
Pfeffer, Sebastien ;
Lagos-Quintana, Mariana ;
Landgraf, Pablo ;
Iovino, Nicola ;
Morris, Patricia ;
Brownstein, Michael J. ;
Kuramochi-Miyagawa, Satomi ;
Nakano, Toru ;
Chien, Minchen ;
Russo, James J. ;
Ju, Jingyue ;
Sheridan, Robert ;
Sander, Chris ;
Zavolan, Mihaela ;
Tuschl, Thomas .
NATURE, 2006, 442 (7099) :203-207
[3]   ShortStack: Comprehensive annotation and quantification of small RNA genes [J].
Axtell, Michael J. .
RNA, 2013, 19 (06) :740-751
[4]   Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis [J].
Blevins, Todd ;
Podicheti, Ram ;
Mishra, Vibhor ;
Marasco, Michelle ;
Wang, Jing ;
Rusch, Doug ;
Tang, Haixu ;
Pikaard, Craig S. .
ELIFE, 2015, 4
[5]   Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis [J].
Cikos, Stefan ;
Bukovska, Alexandra ;
Koppel, Juraj .
BMC MOLECULAR BIOLOGY, 2007, 8
[6]   Seeing the forest for the trees: annotating small RNA producing genes in plants [J].
Coruh, Ceyda ;
Shahid, Saima ;
Axtell, Michael J. .
CURRENT OPINION IN PLANT BIOLOGY, 2014, 18 :87-95
[7]   Evolution and Functional Diversification of MIRNA Genes [J].
Cuperus, Josh T. ;
Fahlgren, Noah ;
Carrington, James C. .
PLANT CELL, 2011, 23 (02) :431-442
[8]   A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE [J].
Faulkner, Geoffrey J. ;
Forrest, Alistair R. R. ;
Chalk, Alistair M. ;
Schroder, Kate ;
Hayashizaki, Yoshihide ;
Carninci, Piero ;
Hume, David A. ;
Grimmond, Sean M. .
GENOMICS, 2008, 91 (03) :281-288
[9]   TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions [J].
Kim, Daehwan ;
Pertea, Geo ;
Trapnell, Cole ;
Pimentel, Harold ;
Kelley, Ryan ;
Salzberg, Steven L. .
GENOME BIOLOGY, 2013, 14 (04)
[10]   miRBase: annotating high confidence microRNAs using deep sequencing data [J].
Kozomara, Ana ;
Griffiths-Jones, Sam .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D68-D73