Effects of Blockage in Deploying mmWave Drone Base Stations for 5G Networks and Beyond

被引:0
作者
Gapeyenko, Margarita [1 ]
Bor-Yaliniz, Irem [2 ]
Andreev, Sergey [1 ]
Yanikomeroglu, Halim [2 ]
Koucheryavy, Yevgeni [1 ]
机构
[1] Tampere Univ Technol, Tampere, Finland
[2] Carleton Univ, Ottawa, ON, Canada
来源
2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS) | 2018年
基金
芬兰科学院;
关键词
5G networks and beyond; mmWave; human body blockage; network slicing; drone-cell communications;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to their unconstrained mobility and capability to carry goods or equipment, unmanned aerial vehicles (UAVs) or drones are considered as a part of the fifth-generation (5G) wireless networks and become attractive candidates to carry a base station (BS). As 5G requirements apply to a broad range of uses cases, it is of particular importance to satisfy those during spontaneous and temporary events, such as a marathon or a rural fair. To be able to support these scenarios, mobile operators need to deploy significant radio access resources quickly and on demand. Accordingly, by focusing on 5G cellular networks, we investigate the use of drone-assisted communication, where a drone is equipped with a millimeter-wave (mmWave) BS. Being a key technology for 5G, mmWave is able to facilitate the provisioning of the desired per-user data rates as drones arrive at the service area whenever needed. Therefore, in order to maximize the benefits of mmWave-drone-BS utilization, this paper proposes a methodology for its optimized deployment, which delivers the optimal height, coordinates, and coverage radius of the drone-BS by taking into account the human body blockage effects over a mmWave-specific channel model. Moreover, our methodology is able to maximize the number of offloaded users by satisfying the target signal quality at the cell edge and considering the maximum service capacity of the drone-BS. It was observed that the mmWave-specific features are extremely important to consider when targeting efficient drone-BS utilization and thus should be carefully incorporated into analysis.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
Abouelseoud M, 2013, IEEE VTS VEH TECHNOL
[2]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[3]   Optimal LAP Altitude for Maximum Coverage [J].
Al-Hourani, Akram ;
Kandeepan, Sithamparanathan ;
Lardner, Simon .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2014, 3 (06) :569-572
[4]   Modeling and Analyzing Millimeter Wave Cellular Systems [J].
Andrews, Jeffrey G. ;
Bai, Tianyang ;
Kulkarni, Mandar N. ;
Alkhateeb, Ahmed ;
Gupta, Abhishek K. ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (01) :403-430
[5]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[6]  
[Anonymous], 2017, Tech. Rep. (TR) 38.913
[7]  
[Anonymous], 2018, Tech. Rep., (TR) 38.901
[8]   Flying Ad-Hoc Networks (FANETs): A survey [J].
Bekmezci, Ilker ;
Sahingoz, Ozgur Koray ;
Temel, Samil .
AD HOC NETWORKS, 2013, 11 (03) :1254-1270
[9]   The New Frontier in RAN Heterogeneity: Multi-Tier Drone-Cells [J].
Bor-Yaliniz, Irem ;
Yanikomeroglu, Halim .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (11) :48-55
[10]   Efficient 3-D Placement of an Aerial Base Station in Next Generation Cellular Networks [J].
Bor-Yaliniz, R. Irem ;
El-Keyi, Amr ;
Yanikomeroglu, Haiti .
2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,