Anderson localization for time periodic random Schrodinger operators

被引:9
作者
Soffer, A [1 ]
Wang, WM
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2] CNRS, UMR 8628, F-75700 Paris, France
[3] Princeton Univ, Dept Math & Phys, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
Anderson localization; quasi-energy operator; Floquet operator;
D O I
10.1081/PDE-120019385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that at large disorder, Anderson localization in Z(d) is stable under localized time-periodic perturbations by proving that the associated quasi-energy operator has pure point spectrum. The formulation of this problem is motivated by questions of Anderson localization for non-linear Schrodinger equations.
引用
收藏
页码:333 / 347
页数:15
相关论文
共 25 条
[1]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[2]   Constructive fractional-moment criteria for localization in random operators [J].
Aizenman, M ;
Schenker, JH ;
Friedrich, RM ;
Hundertmark, D .
PHYSICA A, 2000, 279 (1-4) :369-377
[3]  
AIZENMAN M, 2002, UNPUB
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]  
[Anonymous], SPECTRAL THEORY DIFF
[6]  
BELLISSARD J, 1986, STOCHASTIC PROCESS C
[7]  
COMBESCURE M, 1987, ANN I H POINCARE-PHY, V47, P63
[8]  
CYCON H. L, 1987, Schrodinger operators with application to quantum mechanics and global geometry
[9]   POLYNOMIALLY DECAYING TRANSMISSION FOR THE NONLINEAR SCHRODINGER-EQUATION IN A RANDOM MEDIUM [J].
DEVILLARD, P ;
SOUILLARD, B .
JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (3-4) :423-439
[10]   LOCALIZATION IN DISORDERED, NONLINEAR DYNAMIC-SYSTEMS [J].
FROHLICH, J ;
SPENCER, T ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (3-4) :247-274