Linearized Tensor Renormalization Group Algorithm for the Calculation of Thermodynamic Properties of Quantum Lattice Models

被引:78
作者
Li, Wei [1 ]
Ran, Shi-Ju [1 ]
Gong, Shou-Shu [1 ]
Zhao, Yang [1 ]
Xi, Bin [1 ]
Ye, Fei [2 ]
Su, Gang [1 ]
机构
[1] Chinese Acad Sci, Grad Univ, Coll Phys Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
关键词
ST-TRANSFORMATION APPROACH; ANALYTIC SOLUTIONS; TRANSFER-MATRIX; SYSTEMS;
D O I
10.1103/PhysRevLett.106.127202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A linearized tensor renormalization group algorithm is developed to calculate the thermodynamic properties of low-dimensional quantum lattice models. This new approach employs the infinite time-evolving block decimation technique, and allows for treating directly the transfer-matrix tensor network that makes it more scalable. To illustrate the performance, the thermodynamic quantities of the quantum XY spin chain as well as the Heisenberg antiferromagnet on a honeycomb lattice are calculated by the linearized tensor renormalization group method, showing the pronounced precision and high efficiency.
引用
收藏
页数:4
相关论文
共 39 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]   The density matrix renormalization group for a quantum spin chain at non-zero temperature [J].
Bursill, RJ ;
Xiang, T ;
Gehring, GA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (40) :L583-L590
[3]   Magnetization plateau of the classical Ising model on the Shastry-Sutherland lattice: A tensor renormalization-group approach [J].
Chang, Ming-Che ;
Yang, Min-Fong .
PHYSICAL REVIEW B, 2009, 79 (10)
[4]  
CHEN P, 2009, J STAT MECH-THEORY E, P10001
[5]   Time-step targeting methods for real-time dynamics using the density matrix renormalization group [J].
Feiguin, AE ;
White, SR .
PHYSICAL REVIEW B, 2005, 72 (02)
[6]   Magnetism and thermodynamics of spin-(1/2,1) decorated Heisenberg chain with spin-1 pendants [J].
Gong, Shou-Shu ;
Li, Wei ;
Zhao, Yang ;
Su, Gang .
PHYSICAL REVIEW B, 2010, 81 (21)
[7]   Thermodynamics of spin-12 tetrameric Heisenberg antiferromagnetic chain [J].
Gong, Shou-Shu ;
Gao, Song ;
Su, Gang .
PHYSICAL REVIEW B, 2009, 80 (01)
[8]   Thermodynamics of spin-1/2 antiferromagnet-antiferromagnet-ferromagnet and ferromagnet-ferromagnet-antiferromagnet trimerized quantum Heisenberg chains [J].
Gu, B ;
Su, G ;
Gao, S .
PHYSICAL REVIEW B, 2006, 73 (13)
[9]   Magnetism and thermodynamics of spin-1/2 Heisenberg diamond chains in a magnetic field [J].
Gu, Bo ;
Su, Gang .
PHYSICAL REVIEW B, 2007, 75 (17)
[10]   Comment on "Experimental observation of the 1/3 magnetization plateau in the diamond-chain compound Cu3(CO3)2(OH)2" [J].
Gu, Bo ;
Su, Gang .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)