Nanostructured plasmonic metapixels

被引:23
作者
Williams, Calum [1 ]
Rughoobur, Girish [2 ]
Flewitt, Andrew J. [2 ]
Wilkinson, Timothy D. [1 ]
机构
[1] Univ Cambridge, Ctr Mol Mat Photon & Elect, Elect Engn Div, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[2] Univ Cambridge, Elect Devices & Mat Grp, Elect Engn Div, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
英国工程与自然科学研究理事会;
关键词
COLOR FILTERS; NANOFABRICATION; PIXELS; MODES;
D O I
10.1038/s41598-017-08145-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
State-of-the-art pixels for high-resolution microdisplays utilize reflective surfaces on top of electrical backplanes. Each pixel is a single fixed color and will usually only modulate the amplitude of light. With the rise of nanophotonics, a pixel's relatively large surface area (similar to 10 mu m(2)), is in effect underutilized. Considering the unique optical phenomena associated with plasmonic nanostructures, the scope for use in reflective pixel technology for increased functionality is vast. Yet in general, low reflectance due to plasmonic losses, and sub-optimal design schemes, have limited the real-world application. Here we demonstrate the plasmonic metapixel; which permits high reflection capability whilst providing vivid, polarization switchable, wide color gamut filtering. Ultra-thin nanostructured metal-insulator-metal geometries result in the excitation of hybridized absorption modes across the visible spectrum. These modes include surface plasmons and quasi-guided modes, and by tailoring the absorption modes to exist either side of target wavelengths, we achieve pixels with polarization dependent multicolor reflection on mirror-like surfaces. Because the target wavelength is not part of a plasmonic process, subtractive color filtering and mirror-like reflection occurs. We demonstrate wide color-range pixels, RGB pixel designs, and in-plane Gaussian profile pixels that have the potential to enable new functionality beyond that of a conventional 'square' pixel.
引用
收藏
页数:9
相关论文
共 42 条
  • [31] Williams C., 2015, SPIE NEWSROOM, P3, DOI [10.1117/2.1201506.005981, DOI 10.1117/2.1201506.005981]
  • [32] Single-step fabrication of thin-film linear variable bandpass filters based on metal-insulator-metal geometry
    Williams, Calum
    Rughoobur, Girish
    Flewitt, Andrew J.
    Wilkinson, Timothy D.
    [J]. APPLIED OPTICS, 2016, 55 (32) : 9237 - 9241
  • [33] Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography
    Williams, Calum
    Bartholomew, Richard
    Rughoobur, Girish
    Gordon, George S. D.
    Flewitt, Andrew J.
    Wilkinson, Timothy D.
    [J]. NANOTECHNOLOGY, 2016, 27 (48)
  • [34] Engineered pixels using active plasmonic holograms with liquid crystals
    Williams, Calum
    Montelongo, Yunuen
    Tenorio-Pearl, Jaime Oscar
    Cabrero-Vilatela, Andrea
    Hofmann, Stephan
    Milne, William I.
    Wilkinson, Timothy D.
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2015, 9 (02): : 125 - 129
  • [35] Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging
    Xu, Ting
    Wu, Yi-Kuei
    Luo, Xiangang
    Guo, L. Jay
    [J]. NATURE COMMUNICATIONS, 2010, 1 : 59
  • [36] Metal-insulator-metal light absorber: a continuous structure
    Yan, M.
    [J]. JOURNAL OF OPTICS, 2013, 15 (02)
  • [37] Plasmonic Color Filters for CMOS Image Sensor Applications
    Yokogawa, Sozo
    Burgos, Stanley P.
    Atwater, Harry A.
    [J]. NANO LETTERS, 2012, 12 (08) : 4349 - 4354
  • [38] Yu NF, 2014, NAT MATER, V13, P139, DOI [10.1038/nmat3839, 10.1038/NMAT3839]
  • [39] Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity
    Yun, Hansik
    Lee, Seung-Yeol
    Hong, Keehoon
    Yeom, Jiwoon
    Lee, Byoungho
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [40] Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters
    Zeng, Beibei
    Gao, Yongkang
    Bartoli, Filbert J.
    [J]. SCIENTIFIC REPORTS, 2013, 3