Equitable colorings of Kronecker products of graphs

被引:10
作者
Lin, Wu-Hsiung [1 ]
Chang, Gerard J. [1 ,2 ,3 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
[3] Taipei Off, Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
Equitable coloring; Equitable chromatic number; Equitable chromatic threshold; Kronecker product; CHROMATIC NUMBER; THEOREM;
D O I
10.1016/j.dam.2010.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a positive integer k, a graph G is equitably k-colorable if there is a mapping f : V(G) -> {1, 2, ..., k} such that f(x) not equal f(y) whenever xy is an element of E(G) and vertical bar vertical bar f(-1) (i)vertical bar - vertical bar f(-1) (j)vertical bar vertical bar <= 1 for 1 <= i <= j <= k. The equitable chromatic number of a graph G, denoted by chi=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by chi=(G), is the minimum t such that G is equitably k-colorable for k >= t. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on chi=(G x H) and chi=(G x H) when G and H are complete graphs, bipartite graphs, paths or cycles. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1816 / 1826
页数:11
相关论文
共 37 条
  • [1] Mutual exclusion scheduling
    Baker, BS
    Coffman, EG
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 162 (02) : 225 - 243
  • [2] Blum D., 2003, MISSOURI J MATH SCI, V15, P75
  • [3] Chen B.-L., ARXIV09031396V1
  • [4] EQUITABLE COLORING OF TREES
    CHEN, BL
    LIH, KW
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 61 (01) : 83 - 87
  • [5] EQUITABLE COLORING AND THE MAXIMUM DEGREE
    CHEN, BL
    LIH, KW
    WU, PL
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) : 443 - 447
  • [6] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [7] Erdos P., 1964, THEORY GRAPHS ITS AP, V159
  • [8] Furmanczyk H, 2006, OPUSC MATH, V26, P31
  • [9] HAJNAL A., 1970, Combinatorial Theory and its Applications, V4, P601
  • [10] Hedetniemi S, 1966, Technical Report 03105-44-T