Ground state sign-changing solutions for a class of double-phase problem in bounded domains

被引:9
作者
Hou, Gangling [1 ]
Ge, Bin [2 ,3 ]
Zhang, Beilei [2 ]
Wang, Liyan [3 ]
机构
[1] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin, Peoples R China
[2] Harbin Engn Univ, Sch Math Sci, Harbin, Peoples R China
[3] Harbin Engn Univ, Coll Automat, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Double-phase problem; Musielak-Orlicz space; Variational method; Ground state sign-changing solutions; Nehari manifold; Perturbation method;
D O I
10.1186/s13661-020-01333-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following double-phase problem: {-div(vertical bar del u vertical bar(p-2)del u+a(x)vertical bar del u vertical bar(q-2)del u)=f(x,u) in Omega, u=0 on partial derivative Omega, where N >= 2 and 1 < p < q < N. Assuming that the primitive of f(x,u) is asymptotically q-linear as vertical bar u vertical bar ->infinity and a weak version of Nehari-type monotonicity condition that the function u -> f(x,u)/vertical bar u vertical bar(q-1) is nondecreasing on (-infinity,0)(0,infinity) for a.e. x is an element of Omega, we prove the existence of one ground state sign-changing solution via the constraint variational method and quantitative deformation lemma for the equation. Our results improve and generalize some results obtained by Liu and Dai (J. Differ. Equ. 265(9):4311-4334, 2018).
引用
收藏
页数:21
相关论文
共 17 条
[1]   Variational inequalities in Musielak-Orlicz-Sobolev spaces [J].
Benkirane, A. ;
El Vally, M. Sidi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :787-811
[2]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[3]  
Chang K.C., 1996, Critical Point Theory and Applications
[4]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[5]   Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications [J].
Fan, Xianling ;
Guan, Chun-Xia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :163-175
[6]   Three ground state solutions for double phase problem [J].
Liu, Wulong ;
Dai, Guowei .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
[7]   Existence and multiplicity results for double phase problem [J].
Liu, Wulong ;
Dai, Guowei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) :4311-4334
[8]   Sign-changing and multiple solutions of Kirchhoff type problems without the PS condition [J].
Mao, Anmin ;
Zhang, Zhitao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1275-1287
[9]  
Miranda C., 1940, Boll. Un. Mat. Ital., V3, P5
[10]  
MUSIELAK J, 1983, LECT NOTES MATH, V1034, P1