GUEs and queues

被引:171
作者
Baryshnikov, Y [1 ]
机构
[1] UVSQ, LAMA, F-78035 Versailles, France
关键词
Brownian Motion; Random Matrix; Large Eigenvalue; Exclusion Process; Standard Brownian Motion;
D O I
10.1007/PL00008760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the process D-k, k = 1,2,..., given by [GRAPHICS} B-i bring independent standard Brownian motions. This process describes the limiting behavior "near the edge" in queues in series, totally asymmetric exclusion processes or oriented percolation. The problem of finding the distribution of D was posed in [GW]. The main result of this paper is that the process D, has the law of the process of the largest eigenvalues of the main miners of an infinite random matrix drawn from Gaussian Unitary Ensemble.
引用
收藏
页码:256 / 274
页数:19
相关论文
共 20 条
[11]   VARIATIONAL PROBLEM FOR RANDOM YOUNG TABLEAUX [J].
LOGAN, BF ;
SHEPP, LA .
ADVANCES IN MATHEMATICS, 1977, 26 (02) :206-222
[12]  
Mehta M. L., 1991, Random Matrices, V2nd
[13]  
RAINS E, 1998, ELECT J COMBINATORIC, V5
[14]  
Seppäläinen T, 1997, ANN APPL PROBAB, V7, P855
[15]  
SRINIVASAN R, 1993, MATH OPER RES, V18
[16]   FREDHOLM DETERMINANTS, DIFFERENTIAL-EQUATIONS AND MATRIX MODELS [J].
TRACY, CA ;
WIDOM, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (01) :33-72
[17]  
VERSHIK A, 1985, FUNC ANAL APPL, V19
[18]  
Vershik A M, 1977, SOV MATH DOKL, V18, P527
[19]  
ZHELOBENKO DP, 1973, TRANSL MATH MONOGRAP, V40
[20]  
[No title captured]