On metric Diophantine approximation in matrices and Lie groups

被引:7
作者
Aka, Menny [1 ]
Breuillard, Emmanuel [2 ]
Rosenzweig, Lior [3 ]
de Saxce, Nicolas [4 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Paris 11, Math Lab, F-91405 Orsay, France
[3] KTH, Dept Math, SE-10044 Stockholm, Sweden
[4] Univ Paris 13, Inst Galilee, LAGA, F-93430 Villetaneuse, France
关键词
HOMOGENEOUS SPACES; DYNAMICS; FLOWS;
D O I
10.1016/j.crma.2014.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Diophantine exponent of analytic submanifolds of m x n real matrices, answering questions of Beresnevich, Kleinbock, and Margulis. We identify a family of algebraic obstructions to the extremality of such a submanifold, and give a formula for the exponent when the submanifold is algebraic and defined over Q. We then apply these results to the determination of the Diophantine exponent of rational nilpotent Lie groups. (C) 2015 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:185 / 189
页数:5
相关论文
共 13 条
[1]  
Aka M., 2015, COMPOS MATH
[2]  
Aka M., METRIC DIOPHAN UNPUB
[3]  
Beresnevich V., J THEOR NOM IN PRESS
[4]   On the spectral gap for finitely-generated subgroups of SU(2) [J].
Bourgain, Jean ;
Gamburd, Alex .
INVENTIONES MATHEMATICAE, 2008, 171 (01) :83-121
[5]  
DANI SG, 1985, J REINE ANGEW MATH, V359, P55
[6]  
Gamburd A., 1999, J EUR MATH SOC, V1, P51
[7]  
Gorodnik A, 2007, J MOD DYNAM, V1, P1
[8]   Extremal subspaces and their submanifolds [J].
Kleinbock, D .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :437-466