Detection of COVID-19 Patients Using Machine Learning Techniques: A Nationwide Chilean Study

被引:5
作者
Ormeno, Pablo [1 ]
Marquez, Gaston [2 ]
Guerrero-Nancuante, Camilo [3 ]
Taramasco, Carla [4 ]
机构
[1] Univ Vina del Mar, Escuela Ingn & Negocios, Vina Del Mar 2520000, Chile
[2] Univ Tecn Federico Santa Maria, Dept Elect & Informat, Millennium Nucleus Sociomed, Concepcion 4030000, Chile
[3] Univ Valparaiso, Escuela Enfermeria, Valparaiso 2500000, Chile
[4] Univ Andres Bello, Fac Ingn, Millennium Nucleus Sociomed, Vina Del Mar 2520000, Chile
关键词
Epivigila; machine learning; symptoms; comorbidities;
D O I
10.3390/ijerph19138058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Epivigila is a Chilean integrated epidemiological surveillance system with more than 17,000,000 Chilean patient records, making it an essential and unique source of information for the quantitative and qualitative analysis of the COVID-19 pandemic in Chile. Nevertheless, given the extensive volume of data controlled by Epivigila, it is difficult for health professionals to classify vast volumes of data to determine which symptoms and comorbidities are related to infected patients. This paper aims to compare machine learning techniques (such as support-vector machine, decision tree and random forest techniques) to determine whether a patient has COVID-19 or not based on the symptoms and comorbidities reported by Epivigila. From the group of patients with COVID-19, we selected a sample of 10% confirmed patients to execute and evaluate the techniques. We used precision, recall, accuracy, F-1-score, and AUC to compare the techniques. The results suggest that the support-vector machine performs better than decision tree and random forest regarding the recall, accuracy, F-1-score, and AUC. Machine learning techniques help process and classify large volumes of data more efficiently and effectively, speeding up healthcare decision making.
引用
收藏
页数:15
相关论文
共 26 条
[1]   A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients [J].
Ahamad, Md Martuza ;
Aktar, Sakifa ;
Rashed-Al-Mahfuz, Md ;
Uddin, Shahadat ;
Lio, Pietro ;
Xu, Haoming ;
Summers, Matthew A. ;
Quinn, Julian M. W. ;
Moni, Mohammad Ali .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 160
[2]  
[Anonymous], 1999, MODERN INFORM RETRIE, DOI DOI 10.1145/553876
[3]   A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data [J].
Awal, Md. Abdul ;
Masud, Mehedi ;
Hossain, Md. Shahadat ;
Bulbul, Abdullah Al-Mamun ;
Mahmud, S. M. Hasan ;
Bairagi, Anupam Kumar .
IEEE ACCESS, 2021, 9 :10263-10281
[4]   Assessing countries' performances against COVID-19 via WSIDEA and machine learning algorithms [J].
Aydin, Nezir ;
Yurdakul, Gokhan .
APPLIED SOFT COMPUTING, 2020, 97
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Chilean Ministry of Health, EPIDEMIOLOGICAL SURV
[7]   Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil [J].
de Souza, William Marciel ;
Buss, Lewis Fletcher ;
Candido, Darlan da Silva ;
Carrera, Jean-Paul ;
Li, Sabrina ;
Zarebski, Alexander E. ;
Pereira, Rafael Henrique Moraes ;
Prete, Carlos A., Jr. ;
de Souza-Santos, Andreza Aruska ;
Parag, Kris V. ;
Belotti, Maria Carolina T. D. ;
Vincenti-Gonzalez, Maria F. ;
Messina, Janey ;
da Silva Sales, Flavia Cristina ;
Andrade, Pamela dos Santos ;
Nascimento, Vitor Heloiz ;
Ghilardi, Fabio ;
Abade, Leandro ;
Gutierrez, Bernardo ;
Kraemer, Moritz U. G. ;
Braga, Carlos K. V. ;
Aguiar, Renato Santana ;
Alexander, Neal ;
Mayaud, Philippe ;
Brady, Oliver J. ;
Marcilio, Izabel ;
Gouveia, Nelson ;
Li, Guangdi ;
Tami, Adriana ;
de Oliveira, Silvano Barbosa ;
Porto, Victor Bertollo Gomes ;
Ganem, Fabiana ;
de Almeida, Walquiria Aparecida Ferreira ;
Fantinato, Francieli Fontana Sutile Tardetti ;
Macario, Eduardo Marques ;
de Oliveira, Wanderson Kleber ;
Nogueira, Mauricio L. ;
Pybus, Oliver G. ;
Wu, Chieh-Hsi ;
Croda, Julio ;
Sabino, Ester C. ;
Faria, Nuno Rodrigues .
NATURE HUMAN BEHAVIOUR, 2020, 4 (08) :856-+
[8]   Parameter Selection for Linear Support Vector Regression [J].
Hsia, Jui-Yang ;
Lin, Chih-Jen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) :5639-5644
[9]   Modeling Predictive Age-Dependent and Age-Independent Symptoms and Comorbidities of Patients Seeking Treatment for COVID-19: Model Development and Validation Study [J].
Huang, Yingxiang ;
Radenkovic, Dina ;
Perez, Kevin ;
Nadeau, Kari ;
Verdin, Eric ;
Furman, David .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (03)
[10]   Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis [J].
Jain, Vageesh ;
Yuan, Jin-Min .
INTERNATIONAL JOURNAL OF PUBLIC HEALTH, 2020, 65 (05) :533-546