Reproducing kernel collocation method applied to the non-linear dynamics of pipe whip in a plane

被引:10
作者
Shaw, Amit
Roy, D.
Reid, S. R.
Aleyaasin, M.
机构
[1] Univ Aberdeen, Kings Coll, Dept Engn, Aberdeen AB24 3UE, Scotland
[2] Indian Inst Sci, Dept Civil Engn, Bangalore 560012, Karnataka, India
基金
英国工程与自然科学研究理事会;
关键词
pipe whip; collocation methods; travelling plastic hinges; large deflections; elastic-plastic-hardening-softening beams;
D O I
10.1016/j.ijimpeng.2006.09.004
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A windowed collocation method, based on a moving least squares reproducing kernel particle approximation of functions, is explored for spatial discretization of the strongly non-linear system of partial differential equations governing large, planar whipping motion of a cantilever pipe Subjected to a follower force pulse (the blow-down force) normal to the deflected centreline at its tip. This problem was discussed by Reid et al. [An elastic plastic hardening-softening cantilever beam subjected to a force pulse at its tip: a model for pipe whip. Proc R Soc London A 1998;454:997-1029] where a space-time finite difference discretization was employed to solve the governing partial differential equation of motion. It was shown that, despite the deflected shape predictions being accurate, numerical solutions of these equations might exhibit problematic (possibly spurious) steep localized gradients. The resolution of this problem in the context of structural mechanics is novel and is the subject of this paper. In particular, it is demonstrated that it is possible to reduce significantly such spurious and localized numerical instabilities through a windowed collocation approach with a suitable choice of the window size. The collocation procedure presently adopted is based on the moving least squares reproducing kernel particle method. Material and structural non-linearity in the beam (pipe) model is incorporated via an elastic-plastic-hardening-softening moment-curvature relationship. The projected ordinary differential equations are then integrated in time through a fifth order, explicit Runge-Kutta method with adaptive step sizes. The whipping motion of a pipe is often associated with the formation of one or more so-called moving plastic 'hinges' (regions). Depending on the magnitude and duration of the follower load pulse, plastic hinges may form at intermediate positions along the pipe. In such cases numerical solutions, especially those for curvatures and their derivatives, obtained through central difference or classical finite element methods may exhibit considerable fluctuations in space and time and may even 'blow up' following the formation of a kink at the location of the plastic hinge. However, it is shown that the presently adopted windowed collocation strategy has a far superior numerical performance, arresting these fluctuations to a great extent. Indeed, as demonstrated in this paper, there is a band of window sizes for which such fluctuations may nearly vanish. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1637 / 1654
页数:18
相关论文
共 30 条
[1]   A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods [J].
Atluri, SN ;
Kim, HG ;
Cho, JY .
COMPUTATIONAL MECHANICS, 1999, 24 (05) :348-372
[2]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[3]  
2-N
[4]  
Barry W, 1999, INT J NUMER METH ENG, V46, P671, DOI 10.1002/(SICI)1097-0207(19991020)46:5<671::AID-NME650>3.0.CO
[5]  
2-9
[6]   APPLICATIONS OF HIGHER-ORDER COROTATIONAL STRETCH THEORIES TO NON-LINEAR FINITE-ELEMENT ANALYSIS [J].
BELYTSCHKO, T ;
GLAUM, LW .
COMPUTERS & STRUCTURES, 1979, 10 (1-2) :175-182
[7]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[8]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[9]   Reproducing kernel particle methods for large deformation analysis of non-linear structures [J].
Chen, JS ;
Pan, CH ;
Wu, CT ;
Liu, WK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :195-227
[10]   Large deformation analysis of rubber based on a reproducing kernel particle method [J].
Chen, JS ;
Pan, C ;
Wu, CT .
COMPUTATIONAL MECHANICS, 1997, 19 (03) :211-227