Assessing physics of ion temperature gradient turbulence via hierarchical reduced-model representations

被引:6
作者
Li, P-Y [1 ,2 ]
Terry, P. W. [1 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Univ Texas Austin, Inst Fus Studies, 1 Univ Stn,C1500, Austin, TX 78712 USA
关键词
ZONAL FLOW; SIMULATION; TRANSPORT; DRIVEN;
D O I
10.1063/5.0080511
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The saturation physics of ion temperature gradient (ITG) turbulence is probed by studying how amplitudes and scalings with key parameters vary across a hierarchy of reduced models. The models derive from nonlinear fluid equations for toroidal ITG turbulence under approximations to the mode coupling interactions in wavenumber space and the representation of turbulent decorrelation. Mode coupling approximations include local-in-wavenumber treatments like the spectral density of flux in quasilinear theory, a truncation to three nonlinearly interacting waves, and the interactions in a cascade to high radial wavenumber mediated by a single zonal flow. Turbulent decorrelation treatments are based on the triplet correlation time with and without eddy damping. Model fidelity is assessed by the scalings and magnitudes of the squared amplitudes of unstable mode, stable mode, and zonal flow with respect to the flow-damping rate and temperature gradient. It is shown that all models reproduce fundamental scalings, provided they incorporate the coupling of unstable mode, stable mode, and zonal flow. Accurate amplitude prediction requires eddy damping in the triplet correlation time and proper representation of the zonal-flow drive by interactions associated with the radial wavenumber cascade. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Nonlinear stability and instability in collisionless trapped electron mode turbulence [J].
Baver, DA ;
Terry, PW ;
Gatto, R ;
Fernandez, E .
PHYSICS OF PLASMAS, 2002, 9 (08) :3318-3332
[2]   Toroidal gyrofluid equations for simulations of tokamak turbulence [J].
Beer, MA ;
Hammett, GW .
PHYSICS OF PLASMAS, 1996, 3 (11) :4046-4064
[3]   A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas [J].
Bourdelle, C. ;
Garbet, X. ;
Imbeaux, F. ;
Casati, A. ;
Dubuit, N. ;
Guirlet, R. ;
Parisot, T. .
PHYSICS OF PLASMAS, 2007, 14 (11)
[4]   ANOMALOUS TRANSPORT IN TOKAMAKS - TRANSPORT TASK-FORCE REVIEWS [J].
CALLEN, JD .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (12) :2869-2869
[5]   Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch [J].
Carmody, D. ;
Pueschel, M. J. ;
Anderson, J. K. ;
Terry, P. W. .
PHYSICS OF PLASMAS, 2015, 22 (01)
[6]   Study of the L-mode tokamak plasma "shortfall" with local and global nonlinear gyrokinetic δf particle-in-cell simulation [J].
Chowdhury, J. ;
Wan, Weigang ;
Chen, Yang ;
Parker, Scott E. ;
Groebner, Richard J. ;
Holland, C. ;
Howard, N. T. .
PHYSICS OF PLASMAS, 2014, 21 (11)
[7]   INSTABILITIES DUE TO TEMPERATURE GRADIENTS IN COMPLEX MAGNETIC FIELD CONFIGURATIONS [J].
COPPI, B ;
ROSENBLUTH, MN ;
SAGDEEV, RZ .
PHYSICS OF FLUIDS, 1967, 10 (03) :582-+
[8]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[9]   Coupling of damped and growing modes in unstable shear flow [J].
Fraser, A. E. ;
Terry, P. W. ;
Zweibel, E. G. ;
Pueschel, M. J. .
PHYSICS OF PLASMAS, 2017, 24 (06)
[10]   Verification and validation for magnetic fusion [J].
Greenwald, Martin .
PHYSICS OF PLASMAS, 2010, 17 (05)