Unified way for computing dynamics of Bose-Einstein condensates and degenerate Fermi gases

被引:12
作者
Gawryluk, K. [1 ]
Karpiuk, T. [1 ]
Gajda, M. [2 ]
Rzazewski, K. [3 ]
Brewczyk, M. [1 ]
机构
[1] Univ Bialystok, Fac Phys, Ul Ciolkowskiego 1L, Bialystok, Poland
[2] Inst Phys PAN, Warsaw, Poland
[3] Ctr Theoret Phys PAN, Warsaw, Poland
关键词
Split operator method; SOM; gross-Pitaevskii equation; GP; spinor condensate; dipolar condensate; Bose-Einstein condensate; BEC; degenerate Fermi gas; nonlinear partial integro-differential set of equations; PDE; NoPDE; PIDE; EFFICIENT NUMERICAL-METHODS; GROSS-PITAEVSKII EQUATION; GROUND-STATES; VORTEX;
D O I
10.1080/00207160.2017.1370545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present a very simple and efficient numerical scheme which can be applied to study the dynamics of bosonic systems like, for instance, spinor Bose-Einstein condensates (BEC) with non-local interactions but equally well works for Fermi gases. The method we use is a modification of well known Split Operator Method (SOM). We carefully examine this algorithm in the case of F = 1 spinor BEC without and with dipolar interactions and for strongly interacting two-component Fermi gas. Our extension of the SOM method has many advantages: it is fast, stable, and keeps constant all the physical constraints (constants of motion) at high level.
引用
收藏
页码:2143 / 2161
页数:19
相关论文
共 63 条
[1]   Nonlinear Schrodinger equation for a superfluid Fermi gas in the BCS-BEC crossover [J].
Adhikari, S. K. .
PHYSICAL REVIEW A, 2008, 77 (04)
[2]   Fermionic bright soliton in a boson-fermion mixture [J].
Adhikari, SK .
PHYSICAL REVIEW A, 2005, 72 (05)
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[5]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[6]   PHOTOABSORPTION AND CHARGE OSCILLATION OF THOMAS-FERMI ATOM [J].
BALL, JA ;
WHEELER, JA ;
FIREMEN, EL .
REVIEWS OF MODERN PHYSICS, 1973, 45 (03) :333-352
[7]   HIGHER-ORDER EXPONENTIAL SPLIT OPERATOR METHOD FOR SOLVING TIME-DEPENDENT SCHRODINGER-EQUATIONS [J].
BANDRAUK, AD ;
SHEN, H .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1992, 70 (02) :555-559
[8]   Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT [J].
Bao, Weizhu ;
Tang, Qinglin ;
Zhang, Yong .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (05) :1141-1166
[9]   MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION [J].
Bao, Weizhu ;
Cai, Yongyong .
KINETIC AND RELATED MODELS, 2013, 6 (01) :1-135
[10]  
Bao WZ, 2010, METHODS APPL ANAL, V17, P49